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1. Statistical relative protein quantification: SRM, DDA and DIA
experiments
MSstats is an open-source R-based package for statistical relative quantification of peptides and proteins in
mass spectrometry-based proteomic experiments. This document describes MSstats, the most recent version
of the package, and its use through the command line.

1.1 Applicability
MSstats version 4.0 and above is applicable to multiple types of sample preparation, including label-free
workflows, workflows that use stable isotope labeled reference proteins and peptides, and workflows that use
fractionation. It is applicable to targeted Selected Reaction Monitoring (SRM), Data-Dependent Acquisition
(DDA or shotgun), and Data-Independent Acquisition (DIA or SWATH-MS). It is applicable to experiments
that make arbitrary complex comparisons of experimental conditions or times.

MSstats is not applicable to experiments that compare multiple metabolically labeled endogenous samples
within a same run, such as experiments with iTRAQ labeling or TMT labeling. These experiments are
supported by MSstatsTMT, which is a sibling package. Please check MSstatsTMT in Bioconductor.

1.2 Statistical functionalities
MSstats version 4.0 and above performs three analysis steps. The first step, data processing, visualization,
and run-level summarization, transforms, normalizes and summarizes the intensities of the peaks per MS run
and per protein, and generates workflow-specific and customizable numeric summaries for data visualization
and quality control.

The second step, statistical modeling and inference, automatically detects the experimental design (e.g. group
comparison, paired design or time course, presence of labeled reference peptides or proteins) from the data.
It then reflects the experimental design and the type of spectral acquisition strategy, and fits an appropriate
linear mixed model by means of lm and lmer functionalities in R. The model is used to detect differentially
abundant proteins or peptides, or to summarize the protein or peptide abundance in a single biological
replicate or condition (that can be used, e.g. as input to clustering or classification).

The third step, statistical experimental design, views the dataset being analyzed as a pilot study of a future
experiment, utilizes the variance components of the current dataset, and calculates the minimal number of
replicates necessary in the future experiment to achieve a pre-specified statistical power.

1.3 Interoperability with existing computational tools
MSstats takes as input data in a tabular .csv format, which can be generated by any spectral processing
tool such as Skyline (MacLean et al. 2010), MaxQuant (Cox and Mann 2008), Progenesis QI(Nonlinear
dynamics/Waters), Proteome Discoverer (Thermo Scientific) MultiQuant(Applied Biosystems), OpenMS
(Sturm et al. 2008), SuperHirn (Mueller et al. 2007), OpenSWATH (Röst et al. 2014), Spectronaut(Biognosys),
or DIA-Umpire(Tsou et al. 2015). The functions to convert the required format from several processing tools
are available from MSstats v4.6. Details are in the section below.

For statistics experts, MSstats 4.0 and above satisfies the interoperability requirements of Bioconductor. The
command line-based workflow is partitioned into a series of independent steps, that facilitate the development
and testing of alternative statistical approaches. It complies with the maintenance and documentation
requirements of Bioconductor.

MSstats 4.0 and above is available as an external tool within Skyline. The external tool support within
Skyline manages MSstats installation, point-and-click execution, parameter collection in Windows forms and
output display. Skyline manages the annotations of the experimental design, and the processing of raw data.
It outputs a custom report, that is fed as a single stream input into MSstats. This design buffers proteomics
users from the details of the R implementation, while enabling rigorous statistical modeling. Also, MSstat
can be combined with an OpenMS preprocessing pipeline (e.g. in KNIME). The OpenMS experimental design

2



is used to present the data in an MSstats-conformant way for the analysis. Details are available in OpenMS
tutorial.

1.4 Availability
MSstats is available under the Artistic-2.0 license at msstats.org. MSstats as an external tool for Skyline is
available at http://proteome.gs.washington.edu/software/Skyline/tools.html. MSstats is now also available
in Bioconductor. The most recent version of the package is available at msstats.org or MSstats GitHub.
We suggest to use that if possible. The versioning of the main package is updated several times a year, to
synchronise with the Bioconductor release.
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1.5 Overview of the functionalities

• Profile plot
• Quality control plot
• Condition plot

Data Process

Visualization

Comparisons between conditions

Sample size calculation

Visualization

Visualization

Quantification

• Summary report: feature, sample, missingness (warning messages)
• Logarithm transformation with base 2 or 10
• Normalization: bias of MS run

• Equalize median normalization
• Quantile normalization
• normalization using global standard proteins

• Feature selection: all features, top3 features, topN features, or informative features
• Model-based run quantification

• Tukey’s median polish or linear model
• Label-based or label-free
• Censored or random missing values
• Imputation by accelerated failure model or not

• Heatmap
• Volcano plot
• Comparison plot

• Lists of adjusted p-values fitted with a variety of models
• Multiple comparisons

• Sample size calculation: # of biological replicates according to FDR and CV
• Power calculation

• Sample quantification
• Group quantification

dataProcess

dataProcessPlots

groupComparison

groupComparisonPlots

designSampleSize

designSampleSizePlots

quantification

Explanatory
data analysis:
(pre-analysis)

Model-based
analysis:
(testing)

Design of
a future 

experiment

Model-based
Analysis:

(quantification)

modelBasedQCPlotsVisualization
• Residual plot
• Normal quantile-quantile plot

Formatting
SkylinetoMSstatsFormat

Tool specific
Pre-processing:

MaxQtoMSstatsFormat
ProgenesistoMSstatsFormat

Pre-process MSstats report from Skyline 

Convert the outputs from Progenesis into MSstats required format

Convert the outputs from MaxQuant into MSstats required format

SpectronauttoMSstatsFormat Convert the outputs from Spectronaut into MSstats required format

PDtoMSstatsFormat Convert the outputs from Proteome Discoverer into MSstats required format

OpenMStoMSstatsFormat Convert the outputs from OpenMS into MSstats required format

OpensSWATHtoMSstatsFormat Convert the outputs from OpenSWATH into MSstats required format

DIAUmpiretoMSstatsFormat Convert the outputs from DIA-Umpire into MSstats required format
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1.6 Troubleshooting
To help troubleshoot potential problems with installation or functionalities of MSstats, a progress report is
generated in a separate log file, msstats.log. The file includes information on the R session (R version, loaded
software libraries), options selected by the user, checks of successful completion of intermediate analysis
steps, and warning messages. If the analysis produces an error, the file contains suggestions for possible
reasons for the errors. If a file with this name already exists in working directory, a suffix with a number
will be appended to the file name. In this way a record of all the analyses is kept. Please see the file
KnownIssues-Skyline-MSstatsV3.6.pdf on the “Installation” section of “MSstats” page in msstats.org
for a list of known issues and possible solutions for installation problem of MSstats external tool in Skyline

2. Allowable data formats
2.1 SRM with stable isotope labeled reference peptides
2.1.1 10-column format

MSstats performs statistical analysis steps, that follow peak identification and quantitation. Therefore, input
to MSstats is the output of other software tools (such as Skyline or MultiQuant) that read raw spectral files
and identify and quantify spectral peaks. The preferred structure of data for use in MSstats is a .csv file
in a “long” format with 10 columns representing the following variables: ProteinName, PeptideSequence,
PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run,
Intensity. The variable names are fixed, but are case-insensitive.

(a) ProteinName: This column needs information about Protein id. Statistical analysis will be done
separately for each unique label in this column. For peptide-level modeling and analysis, use peptide id
in this column.

(b)-(e) PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge: The combination of these
4 columns defines a feature of a protein (in SRM experiments, it is a transition that is identified and
quantified across runs). If the information for one or several of these columns is not available, please do
not discard these columns but use a single fixed value across the entire dataset. For example, if the original
raw data does not contain the information of ProductCharge, assign the value 0 to the entries in the
column ProductCharge for the entire dataset. If the peptide sequences should be distinguished based on
post-translational modifications, this column can be renamed to PeptideModifiedSequence. For example,
this allows us to use the PeptideModifiedSequence column from the Skyline report.

(f) IsotopeLabelType: This column indicates whether this measurement is based on the endogenous
peptides (use “L”) or labeled reference peptides (use “H”).

(g) Condition: For group comparison experiments, this column indicates groups of interest (such as
“Disease” or “Control”). For time-course experiments, this column indicates time points (such as “T1”,
“T2”, etc). If the experimental design contains both distinct groups of subjects and multiple time
points per subject, this column should indicate a combination of these values (such as “Disease_T1”,
“Disease_T2”, “Control_T1”, “Control_T2”, etc.).

(h) BioReplicate: This column should contain a unique identifier for each biological replicate in the
experiment. For example, in a clinical proteomic investigation this should be a unique patient id.
Patients from distinct groups should have distinct ids. MSstats does not require the presence of
technical replicates in the experiment. If the technical replicates are present, all samples or runs from a
same biological replicate should have a same id. MSstats automatically detects the presence of technical
replicates and accounts for them in the model-based analysis.

(i) Run: This column contains the identifier of a mass spectrometry run. Each mass spectrometry run
should have a unique identifier, regardless of the origin of the biological sample. In SRM experiments,
if all the transitions of a biological or a technical replicate are split into multiple “methods” due to
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the technical limitations, each method should have a separate identifier. When processed by Skyline,
distinct values of runs correspond to distinct input file names. It is possible to use the actual input file
names as values in the column Run.

(j) Intensity: This column should contain the quantified signal of a feature in a run without any
transformation (in particular, no logarithm transform). The signals can be quantified as the peak height
or the peak of area under curve. Any other quantitative representation of abundance can also be used.

An example of an acceptable input dataset is shown below. This example dataset is from an SRM experiment
with stable isotope labeled reference peptides. The dataset is stored in a .csv file in a “long” format. Each
row corresponds to a single intensity. More details on assigning the values of Condition, BioReplicate
and Run, depending on the structure of the experimental design, are given below.

2.1.2 Assigning the values of Condition, BioReplicate and Run

The values of Condition, BioReplicate, Run depend on the design of the specific experiment.

1) Group comparison In a group comparison design, the conditions (e.g., disease states) are profiled across
non-overlapping sets of biological replicates (i.e., subjects). In this example there are 2 conditions,
Disease and Control (in general the number of conditions can vary). There are 3 subjects (i.e., biological
replicates) per condition (in general an equal number of replicates per condition is not required). Each subject
has 2 technical replicate runs (in general technical replicates are not required, and their number per sample
may vary). Overall, in this example there are 2 × 3 × 2 = 12 mass spectrometry runs.
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Disease Control

Subject 1
Run 1

Run 2

Subject 2
Run 3

Run 4

Subject 3
Run 5

Run 6

Subject 4
Run 7

Run 8

Subject 5
Run 9

Run 10

Subject 6
Run 11

Run 12

Table below shows the values of the columns Condition, BioReplicate and Run for this situation. It is
important to note two things. First, the order of subjects and conditions in the experiment should be
randomized, and run id does not need to represent the order of spectral acquisition. Second, the values of the
columns are repeated for every quantified transition. For example, if in each run the experiment quantifies
50 endogenous transitions and 50 labeled reference counterparts, then the input file has 12 × 50 × 2 = 1200
lines. When a feature intensity is missing in a run, the data structure should contain a separate row for each
missing value. The rows should include all the information (from ProteinName to Run), and indicate missing
intensities with NA.

Condition BioReplicate Run

Disease Subject1 1
Disease Subject1 2
Disease Subject2 3
Disease Subject2 4
Disease Subject3 5
Disease Subject3 6
Control Subject4 7
Control Subject4 8
Control Subject5 9
Control Subject5 10
Control Subject6 11
Control Subject6 12

2) Time course The important feature of a time course experimental design is that a same subject
(i.e., biological replicate) is repetitively measured across multiple time points. In this example
there are 2 time points, Time1 and Time2 (in general the number of times can vary). There are 4 subjects
(i.e., biological replicates) measured across times (in general an equal number of times per replicate is not
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required). There are no technical replicates (in general the number of technical replicates per sample may
vary). Overall, in this example there are 2 × 4 × 1 = 8 mass spectrometry runs.

Time1 Time2

Subject 1
Run 1

Subject 2
Run 3

Subject 3
Run 5

Run 2

Subject 4
Run 7

Run 4

Run 6

Run 8

Table below shows the values of the columns Condition, BioReplicate and Run for this situation. Comments
on the order of the runs, on the number of lines in the input data structure, and on the handling of missing
peak intensities are as in the group comparison design.

Condition BioReplicate Run

Time1 Subject1 1
Time2 Subject1 2
Time1 Subject2 3
Time2 Subject2 4
Time1 Subject3 5
Time2 Subject3 6
Time1 Subject4 7
Time2 Subject4 8

3) Paired design Another frequently used experimental design is a paired design, where measurements
from multiple conditions (such as healthy biopsy and disease biopsy) are taken from a same subject. The
statistical model for this experimental design is the same as in the time course experiment, however the
values in the columns of the input data may have a different appearence. In this example there are 2 subjects,
PatientA and PatientB (in general the number of patients can vary). There are two conditions per subject,
BiopsyHealthy and BiopsyTumor (in general the number of conditions per subject can exceed two). In this
example there are 3 technical replicates of each type (in this example, the technical replicates are biopsies; in
general these can also be replicate sample preparations or replicate mass spectrometry runs). Overall, in this
example there are 2 × 2 × 3 = 12 mass spectrometry runs.
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BiopsyHealthy BiopsyTumor

PatientA

Biopsy
Healthy

Biopsy
Tumor

Run 1

Run 2

Run 3 Run 4

Run 5

Run 6

PatientB

Biopsy
Healthy

Biopsy
Tumor

Run 7

Run 8

Run 9 Run 10

Run 11

Run 12

Table below shows the values of the columns Condition, BioReplicate and Run for this situation. Comments
on the order of the runs, on the number of lines in the input data structure, and on the handling of missing
peak intensities are as in the group comparison design.

Condition BioReplicate Run

BiopsyHealthy PatientA 1
BiopsyHealthy PatientA 2
BiopsyHealthy PatientA 3
BiopsyTumor PatientA 4
BiopsyTumor PatientA 5
BiopsyTumor PatientA 6
BiopsyHealthy PatientB 7
BiopsyHealthy PatientB 8
BiopsyHealthy PatientB 9
BiopsyTumor PatientB 10
BiopsyTumor PatientB 11
BiopsyTumor PatientB 12

2.2 Label-free DDA
For label-free DDA experiments the required input is the 10-column format, the same as described in section 2.1
for SRM experiments. In DDA experiments spectral features are defined as peptide ions, which are identified
and quantified across runs. Since for label-free DDA experiments some of the columns PeptideSequence,
PrecursorCharge, FragmentIon, and ProductCharge are not relevant, these columns will have a constant
fixed value (such as NA) across the entire dataset. Furthermore, the column IsotopeLabelType will be set to
“L” for the entire dataset.

9



2.2 Label-free DIA
For label-free DIA experiments, the required input is the 10-column format, the same as described in
section 2.1 for SRM experiments. The values of the required columns can be extracted from the output
of signal processing software such as Skyline or OpenSWATH. By default, the combination of the values
in the columns PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge uniquely identifies
each spectral feature (i.e., a fragment ion identified and quantified across multiple runs). If the signal
processing software does not provide the information on some of these columns but provides a unique feature
identifier, it is possible to use this unique identifier instead of one of these columns. Furthermore, the column
IsotopeLabelType is set to “L” for the entire dataset.

An example dataset is shown below. In this example, feature id generated by OpenSWATH is used instead of
ProductCharge to uniquely characterize each feature.

3. Prerequisites and setting for MSstats analysis
MSstats is an R-based package. It is assumed that you already have R installed. You can install MSstats
from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("MSstats")

Once you have the package installed, load MSstats into an R session and verify that you have the correct
version. Note that in order to use MSstats, the package needs to be loaded every time you restart R.
library('MSstats', warn.conflicts = F, quietly = T, verbose = F)

## Warning: package 'MSstats' was built under R version 4.2.2
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?MSstats

## No documentation for 'MSstats' in specified packages and libraries:
## you could try '??MSstats'
sessionInfo()

## R version 4.2.1 (2022-06-23)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur ... 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] MSstats_4.6.3
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.10 log4r_0.4.3 nloptr_2.0.3
## [4] pillar_1.8.1 compiler_4.2.1 bitops_1.0-7
## [7] tools_4.2.1 boot_1.3-28.1 digest_0.6.31
## [10] lme4_1.1-31 checkmate_2.1.0 preprocessCore_1.60.2
## [13] evaluate_0.20 lifecycle_1.0.3 tibble_3.1.8
## [16] gtable_0.3.1 nlme_3.1-161 lattice_0.20-45
## [19] pkgconfig_2.0.3 rlang_1.0.6 Matrix_1.5-3
## [22] cli_3.6.0 rstudioapi_0.14 ggrepel_0.9.2
## [25] yaml_2.3.7 xfun_0.36 fastmap_1.1.0
## [28] dplyr_1.1.0 knitr_1.42 caTools_1.18.2
## [31] gtools_3.9.4 generics_0.1.3 vctrs_0.5.2
## [34] grid_4.2.1 tidyselect_1.2.0 glue_1.6.2
## [37] data.table_1.14.6 R6_2.5.1 marray_1.76.0
## [40] fansi_1.0.4 survival_3.5-0 rmarkdown_2.20
## [43] minqa_1.2.5 limma_3.54.1 ggplot2_3.4.0
## [46] magrittr_2.0.3 backports_1.4.1 gplots_3.1.3
## [49] scales_1.2.1 htmltools_0.5.4 splines_4.2.1
## [52] MASS_7.3-58.2 MSstatsConvert_1.8.2 colorspace_2.1-0
## [55] KernSmooth_2.23-20 utf8_1.2.2 munsell_0.5.0

Finally, set the working directory to where you saved files. Note that you may have a different path on your
computer from the example.
setwd('MSstats_v4.6.3')

You can check your working directory by:
getwd()

## [1] "/Users/kohler.d/Downloads/User_guide"
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4. DDA analysis with MSstats
4.1 General workflow for DDA
This section describes a typical workflow for DDA analysis with MSstats. Controlled mixture DDA data will
be used for demonstration. This dataset is available as an example data (DDARawData) in MSstats. Also the
csv file for the same dataset, RawData.DDA.csv, is available in MSstats material GitHub in the folder named
‘example dataset/DDA_controlledMixture2009’. It is processed by Superhirn. (original reference link)

4.1.1 Preparing the data for MSstats input

The first step in using the MSstats is to format the data as described in Section 2. DDARawData is already
formatted for MSstats input.
# Check the first 6 rows in DDARawData
head(DDARawData)

## ProteinName PeptideSequence PrecursorCharge FragmentIon ProductCharge
## 1 bovine S.PVDIDTK_5 5 NA NA
## 2 bovine S.PVDIDTK_5 5 NA NA
## 3 bovine S.PVDIDTK_5 5 NA NA
## 4 bovine S.PVDIDTK_5 5 NA NA
## 5 bovine S.PVDIDTK_5 5 NA NA
## 6 bovine S.PVDIDTK_5 5 NA NA
## IsotopeLabelType Condition BioReplicate Run Intensity
## 1 L C1 1 1 2636792
## 2 L C1 1 2 1992418
## 3 L C1 1 3 1982146
## 4 L C2 1 4 5019594
## 5 L C2 1 5 4560468
## 6 L C2 1 6 3627849

4.1.2 Processing the data

Normalizing and summarizing data with dataProcess After reading the datasets, MSstats performs
1) logarithm transformation of Intensity column, 2) normalization, 3) feature selection, (all features vs
subset of features), 4) imputation for censored missing value, which are below the cutoff and undetectable, 5)
run-level summarization.

To get started with this function, visit the help section of dataProcess first:
?dataProcess

NOTE At the logarithm transformation step, zero value in Intensity is problematic. When Intensity=0,
Inf is the output from logarithm transformed intensities. Also, logarithm transformed intensites, when
Intensity < 1, are negative values and it can make overestimated between log fold change. Therefore,
logarithm transformed intensities for original intensity between 0 and 1 will be replaced with zero value after
normalization.

Default normalization and summarization options dataProcess provides a variety of options in
consideration of different experimental protocols. Default values for all options are our suggestion for general
cases. However, the default options may not be appropriate for all possible scenarios. It is important to
understand their underlying assumption to avoid misuse. Below is the additional explanation for main
options.

• logTrans : logarithm transformation with base 2(default) of Intensity column.

• Normalization :
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– ‘equalizeMedians’ : The default option for normalization is equalizeMedians, where all the
intensities in a run are shifted by a constant, to equalize the median of intensities across runs for
label-free experiment. This normalization method is appropriate when we can assume that the
majority of proteins do not change across runs. Be cautious when using the equalizeMedians
option for a label-free DDA dataset with only a small number of proteins. For label based experiment,
equalizeMedians equalizes the median of reference intensities across runs and is generally proper
even for a dataset with a small number of proteins.

– ‘globalStandards’ : Instead, if you have a spiked in standard, you may set this to
globalStandards and define the standard with nameStandards option.

– ‘quantile’ : The distribution of all the intensities in each run will become the same across runs for
label-free experiment. For label-based experiment, the distribution of all the reference intensities
will be become the same across runs and all the endogenous intensities are shifted by a constant
corresponding to reference intensities.

– FALSE : No normalization is performed. If you had your own normalization before MSstats, you
should use Normalization=FALSE.

– NOTE : If there are multiple fractionations or injections for one sample, normalization is perform
by each fractionation or different m/z range from multiple injections.

• nameStandards : Only for Normalization='globalStandards', global standard peptide or Protein
names, which you can assume that they have the same abundance across MS runs, should be assigned
in the vector for this option.

• featureSubset :

– ‘all’ : Use all features in the dataset.
– ‘top3’ : Use top 3 features which have highest average of log2(intensity) across runs.
– ‘topN’ : Use top N features which have highest average of log2(intensity) across runs. It needs

the input for n_top_featureoption (ex. n_top_feature=5 for top 5 features).

• summaryMethod : Method for run-level summarization.

– ‘TMP’ : Default. Tukey’s median polish (medpolish function in stats). Robust parameter
estimation method with median across rows and columns.

– ‘linear’ : Linear model (lm function). Average-based summarization.

• MBimpute : whether model-based imputation will be performed or not. Only for summaryMethod='TMP'.

– TRUE : Default. Censored missing values will be imputed by Accelerated Failure Time
model. Censored missing values will be determined by other options, censoredInt and
maxQuantileforCensored

– FALSE : No model-based imputation.

• maxQuantileforCensored : Maximum quantile for deciding censored missing value. Default
is 0.999. If you don’t want to apply the threshold of noise intensity in your data, you can use
maxQuantileforCensored=NULL.

• censoredInt : The processing tools report missing values differently. This option is for distinguish
which value should be considered as missing, and further whether it is censored or at random.

– ‘NA’ : Default. It assumes that all NAs in Intensity column are censored.
– ‘0’ : It assumes that all values between 0 and 1 in Intensity column are censored. If there are

NAs in Intensity with this option, NAs will be considered as random missing.
– NULL : It assumes that all missing values are randomly missing.

• cutoffCensored : cutoff value for AFT model. It is only with censoredInt='NA' or censoredInt='0'.
If you have censoredInt=NULL, it assumes that there is no censored missing and any imputation will
not be performed.

– ‘minFeature’ : cutoff for AFT model will be the minimum value for each feature across runs.
– ‘minRun’ : cutoff for AFT model will be the minimum value for each run across features.
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– ‘minFeatureNRun’ : cutoff for AFT model will be the smallest value between minimum value
of corresponding feature and minimum value of corresponding run.

A typical label-free DDA dataset may have many missing values and noisy features with outliers. MSstats
supports several ways to deal with this. The default option for summarization is TMP (robust parameter
estimation method with median across rows and columns) after imputation by AFT (accelerated failure
time model, MBimpute=TRUE) based on censored intensity for NA (censoredInt="NA") with a cutoff as the
minimum value for a feature (cutoffCensored="minFeature").

This process handles missing values through imputation and reduces the influence of the outliers using the
TMP estimation. Note, however, that those runs with no measurements at all will be removed and not be used
for any calculation.
# default option
DDA2009.proposed <- dataProcess(raw = DDARawData,

normalization = 'equalizeMedians',
summaryMethod = 'TMP',
censoredInt = "NA",
MBimpute = TRUE,
maxQuantileforCensored=0.999)

## INFO [2023-02-28 10:22:34] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:22:34] ** Fractionation handled.
## INFO [2023-02-28 10:22:34] ** Updated quantification data to make balanced design. Missing values are marked by NA
## INFO [2023-02-28 10:22:35] ** Log2 intensities under cutoff = 13.456 were considered as censored missing values.
## INFO [2023-02-28 10:22:35] ** Log2 intensities = NA were considered as censored missing values.
## INFO [2023-02-28 10:22:35] ** Use all features that the dataset originally has.
## INFO [2023-02-28 10:22:35]
## # proteins: 6
## # peptides per protein: 11-32
## # features per peptide: 1-1
## INFO [2023-02-28 10:22:35]
## C1 C2 C3 C4 C5 C6
## # runs 3 3 3 3 3 3
## # bioreplicates 1 1 1 1 1 1
## # tech. replicates 3 3 3 3 3 3
## INFO [2023-02-28 10:22:35] Some features are completely missing in at least one condition:
## D.GPLTGTYR_23_23_NA_NA,
## F.HFHWGSSDDQGSEHTVDR_402_402_NA_NA,
## G.PLTGTYR_8_8_NA_NA,
## H.SFNVEYDDSQDK_465_465_NA_NA,
## K.AVVQDPALKPL_156_156_NA_NA ...
## INFO [2023-02-28 10:22:35] == Start the summarization per subplot...
## | | | 0% | |============ | 17% | |======================= | 33% | |=================================== | 50% | |=============================================== | 67% | |========================================================== | 83% | |======================================================================| 100%
## INFO [2023-02-28 10:22:35] == Summarization is done.

Output of dataProcess Output of the dataProcess function contains the processed and run-level
summarized data as well as relevant information for the summarization step.
# output of dataProcess includes several data types.
names(DDA2009.proposed)

## [1] "FeatureLevelData" "ProteinLevelData" "SummaryMethod"
# the data after reformatting and normalization
head(DDA2009.proposed$ProcessedData)
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## NULL

DDA2009.TMP$ProcessedData has the data after normalization and deciding the data-specific threshold for
censored missing value. There are several new columns in the datasets. Also dataset is reformated. Intensity
column includes original intensities values in the input of dataProcess. ABUNDANCE column contains the log2
transformed and normalized intensities and it will used for run-level summarization. censored column has
the decision about censored missing or not, based on censoredInt and maxQuantileforCensored options.
ABUNDANCE with TRUE value in censored column will be considered as censored missing and imputed with
MBimpute=TRUE option. Censored missing will be distinguished in Profile plot from dataProcessPlots.
# run-level summarized data
head(DDA2009.proposed$RunlevelData)

## NULL

DDA2009.TMP$RunlevelData includes run-level summarized data based on DDA2009.TMP$ProcessedData.
LogIntensities is run-level summarized data and will be used for groupComparison function in next
step. It will also used for summarized profile plot (summaryPlot=TRUE for dataProcessPlots function with
type='ProfilePlot'). NumMeasuredFeature shows how many features were used for summarization of
the corresponding run and protein. MissingPercentage means the percentage of random and censored
missing in the corresponding run and protein out of the total number of feature in the corresponding protein.
more50missing means whether MissingPercentage is greater than 50% or not. NumImputedFeature show
how many features were imputed in the corresponding run and protein.
# here 'TMP' : It shows which summaryMethod is used for run-level summarization.
head(DDA2009.proposed$SummaryMethod)

## [1] "TMP"

4.1.3 Visualization of processed data

Quality control and normalization effects QC plot visualizes potential systematic biases between
mass spectrometry runs. Also it can be used to assess the effects of the normalization step. After constant
normalization, the median intensities of reference transitions across all proteins should be equal between
runs. After quantile normalization, the distribution of reference intensities across all proteins should be equal
between runs. This step generates two types of QC plots: one for all the proteins combined, and the other
separately for each protein (produced in a separate pdf file). These plots can be generated for either all
proteins at once or each protein individually if we have a large dataset. The example below shows both
options.
# use type="QCplot" with all proteins
# change the upper limit of y-axis=35
# set up the size of pdf
dataProcessPlots(data = DDA2009.proposed, type="QCplot", ylimUp=35,

width=5, height=5)
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# use type="QCplot" for 1st protein only
# change the upper limit of y-axis=35
# set up the size of pdf
dataProcessPlots(data = DDA2009.proposed, type="QCplot", which.Protein=1,

ylimUp=35, width=5, height=5)

NOTE Don’t worry about warning messages as below. It means NA values are not included in the plot,
which is a proper way for this case.

Warning messages:
1: Removed 698 rows containing non-finite values
(stat_boxplot).
...
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Profile plot Profile plot helps identify potential sources of variation (both variation of interest and
nuisance variation) for each protein. Such plots should be done after the normalization. Profile plots with
summarization present the effects of the summarization step by showing all individual measurements of
a protein and their summarized intensity. With type="profileplot", two pdfs will be generated. The
first pdf includes plots (per protein) to show individual measurement for each peptide (peptide for DDA,
transition for SRM or DIA) across runs, grouped per condition. Each peptide has a different color/type
layout. Disconnected lines show that there are missing value (NA). To ignore these plots, please use the
option originalPlot=FALSE. The second pdf, which is named with ‘wSummarization’ suffix, shows run-level
summarized data per protein. The same peptides (or transition) in the first plot are presented in grey, with
the summarized values (by TMP, in this example) overlaid in red. To ignore these plots with summarization,
please use the option summaryPlot=FALSE.
dataProcessPlots(data = DDA2009.proposed, type="Profileplot", ylimUp=35,

featureName="NA", width=5, height=5, address="DDA2009_proposed_")

Condition plot Condition plot visualizes potential systematic diffrences in protein inensities between condi-
tions. Dots indicate the mean of log2 intensities for each condition. With the option interval='CI'(default),
error bars indicate the confidence interval with 0.95 significant level for each condition. With the option
interval='SD', error bars indicate the standard deviation among all feature intensities for each condition.
The intervals are for descriptive purposes only, as more refined model-based estimation is
obtained as discussed below. With the option scale=TRUE, the levels of conditions are scaled according
to their labels. If scale=FALSE (default), the conditions on the x-axis are equally spaced.
dataProcessPlots(data = DDA2009.proposed, type="Conditionplot",

width=5, height=5, address="DDA2009_proposed_")

17



dataProcessPlots has a number of layout options, including size and description of axes labels, output file
name etc for three types of plots above. The option address specifies the name of the folder storing pdf files
with the plots. With the option address=FALSE, plots will be shown in the graphical window, but not saved
in a file. If a file with this name already exists in working directory, a suffix with a number will be appended
to the file name. In this way a record of all the analyses is kept.

For more details, visit the help file using the following code.
?dataProcessPlots

4.1.4 Different imputation options

Here is the summary of combinations for imputation options with summaryMethod='TMP'.

• censoredInt=NULL : It assumes that all intensities are missing at random and there is no action for
missing values with MBimpute=FALSE. If you have MBimpute=TRUE with censoredInt=NULL, there will
be error message to fix either MBimpute or censoredInt options.

• censoredInt='NA' or '0' & MBimpute=TRUE : AFT model-based imputation using cutoffCensored
value in the AFT model.

• censoredInt='NA' or '0' & MBimpute=FALSE : censored intensities (here NA’s) will be replaced with
the value specified in cutoffCensored.

NOTE1 The default option for cutoffCensored is minFeature, taking the minimum value for the corre-
sponding feature. With this option, those runs with substantial missing measurements will be biased by
the cutoff value. In such case, you may remove the runs that have more than 50% missing values from the
analysis with the option remove50missing=TRUE.

NOTE2 In case that there are completely missing measurements in a run for a protein, any imputation
will not be performed. In addition, the condition, which has no measurement at all in a protein, will be not
imputed.

Here is the example of dataProcess option without imputation, assuming that all missing values are random.
# No imputation
DDA2009.TMP <- dataProcess(raw = DDARawData,

normalization = 'equalizeMedians',
summaryMethod = 'TMP',
censoredInt = NULL, MBimpute=FALSE)
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## INFO [2023-02-28 10:22:39] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:22:39] ** Fractionation handled.
## INFO [2023-02-28 10:22:39] ** Updated quantification data to make balanced design. Missing values are marked by NA
## INFO [2023-02-28 10:22:39] ** Use all features that the dataset originally has.
## INFO [2023-02-28 10:22:39]
## # proteins: 6
## # peptides per protein: 11-32
## # features per peptide: 1-1
## INFO [2023-02-28 10:22:39]
## C1 C2 C3 C4 C5 C6
## # runs 3 3 3 3 3 3
## # bioreplicates 1 1 1 1 1 1
## # tech. replicates 3 3 3 3 3 3
## INFO [2023-02-28 10:22:39] Some features are completely missing in at least one condition:
## D.GPLTGTYR_23_23_NA_NA,
## F.HFHWGSSDDQGSEHTVDR_402_402_NA_NA,
## G.PLTGTYR_8_8_NA_NA,
## H.SFNVEYDDSQDK_465_465_NA_NA,
## K.AVVQDPALKPL_156_156_NA_NA ...
## INFO [2023-02-28 10:22:39] == Start the summarization per subplot...
## | | | 0% | |============ | 17% | |======================= | 33% | |=================================== | 50% | |=============================================== | 67% | |========================================================== | 83% | |======================================================================| 100%
## INFO [2023-02-28 10:22:39] == Summarization is done.

These plots can be used compare and select among different options for imputation (e.g., TMP with or without
considering missing values for summarization in dataProcess).
dataProcessPlots(data = DDA2009.TMP, type="Profileplot", ylimUp=35,

featureName="NA", width=5, height=5, address="DDA2009_TMP_")

While original profile plots are the same, summarization plots reveal differences, especially for conditions ‘C1’
and ‘C2’ in ‘yeast’ protein, which have many missing values. Without imputation, summarized values in ‘C1’
group is higher than with imputation for missing values.

4.1.5 Different summarization options

Besides summarizing observations with the median polish method, MSstats also offers a summarization
option using linear model with option summaryMethod="linear" with censoredInt=NULL assumes that all
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NA’s are missing at random and uses lm for parameter estimation.
# linear model (lm) with run and feature
DDA2009.linear <- dataProcess(raw = DDARawData,

normalization = 'equalizeMedians',
summaryMethod = 'linear',
censoredInt = NULL,
MBimpute = FALSE)

Profile plots below can be used compare among different options for summarization (e.g., TMP with or without
imputation vs linear for summarization in dataProcess).
dataProcessPlots(data = DDA2009.linear, type="Profileplot", ylimUp=35,

featureName="NA", width=5, height=5, address="DDA2009_linear_")

While original profile plots are the same, summarization plots reveal differences, especially for conditions
‘C1’, ‘C2’, and ‘C6’ in ‘yeast’ protein, which have many missing values. Summarized values with linear model
in these groups are much higher than those with TMP considering missing values or not.

4.1.6 Finding differentially abundant proteins across conditions

Comparing conditions with groupComparison With the normalized data and run-level summarized
data obtained by applying one of the dataProcess summarization methods, it is of general interest to
find proteins changing between groups of conditions. Within MSstats this can be done by using the
groupComparison function, which takes the output of the dataProcess function as input.
?groupComparison

In addition to the processed data, the groupComparison function requires a contrast matrix to define the
comparison to be made. The contrast matrix is created with each condition in column and each comparison
in row. Note that the conditions are arranged in alphabetical order. The order of condition that MSstats
recognizes can be shown by using levels:
levels(DDA2009.TMP$ProcessedData$GROUP_ORIGINAL)

## NULL

Entries in each row of the contrast matrix are filled in with 0, 1, or -1 to specify the comparison, where 0 is
for conditions we would like to ignore, 1 is for conditions we would like to put in the numerator of the ratio
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or fold-change, and -1 is for conditions we would like to put in the denumerator of the ratio or fold-change.

For example, if you want to compare C2-C1, which means log(C2)-log(C1) and the same as log(C2/C1), set
‘1’ for C2 and ‘-1’ for C1 in the row. Combining multiple groups for comparison is also possible. For example,
if you want to compare between average of C2 and C3 and average of C1, (C3+C2)/2-C1 as formula, set ‘-1’
for C1, ‘0.5’ for C2 and ‘0.5’ for C3, and ‘0’ for rest of groups.
comparison1 <- matrix(c(-1,1,0,0,0,0),nrow=1)
comparison2 <- matrix(c(0,-1,1,0,0,0),nrow=1)
comparison3 <- matrix(c(0,0,-1,1,0,0),nrow=1)
comparison4 <- matrix(c(0,0,0,-1,1,0),nrow=1)
comparison5 <- matrix(c(0,0,0,0,-1,1),nrow=1)
comparison6 <- matrix(c(1,0,0,0,0,-1),nrow=1)

comparison<-rbind(comparison1,comparison2,comparison3,comparison4,comparison5,comparison6)
row.names(comparison) <- c("C2-C1","C3-C2","C4-C3","C5-C4","C6-C5","C1-C6")
colnames(comparison) <- c("C1","C2","C3","C4","C5","C6")

With the contrast matrix specified, group comparison can be performed as follows.
DDA2009.comparisons <- groupComparison(contrast.matrix = comparison, data = DDA2009.proposed)

## INFO [2023-02-28 10:22:43] == Start to test and get inference in whole plot ...
## | | | 0% | |============ | 17% | |======================= | 33% | |=================================== | 50% | |=============================================== | 67% | |========================================================== | 83% | |======================================================================| 100%
## INFO [2023-02-28 10:22:43] == Comparisons for all proteins are done.

Output of the groupComparison function contains three data frames:
# output from groupComparison function has three data frames
names(DDA2009.comparisons)

## [1] "ComparisonResult" "ModelQC" "FittedModel"

Results of the statistical comparison are stored in the data frame named ComparisonResult:
# name of columns in result data.frame
head(DDA2009.comparisons$ComparisonResult)

## Protein Label log2FC SE Tvalue DF pvalue adj.pvalue
## 1 bovine C2-C1 0.6048799 0.4245943 1.424607 11 1.820186e-01 1.820186e-01
## 2 bovine C3-C2 -7.2166867 0.4747109 -15.202277 11 9.896993e-09 5.938196e-08
## 3 bovine C4-C3 1.3344126 0.4747109 2.811000 11 1.693817e-02 1.693817e-02
## 4 bovine C5-C4 2.0463466 0.4245943 4.819533 11 5.362805e-04 6.435367e-04
## 5 bovine C6-C5 1.5983090 0.4245943 3.764320 11 3.131096e-03 3.757316e-03
## 6 bovine C1-C6 1.6327386 0.4245943 3.845408 11 2.720989e-03 3.265186e-03
## issue MissingPercentage ImputationPercentage
## 1 NA 0.03571429 0.03571429
## 2 NA 0.48809524 0.32142857
## 3 NA 0.84523810 0.67857143
## 4 NA 0.52380952 0.52380952
## 5 NA 0.16666667 0.16666667
## 6 NA 0.03571429 0.03571429

The result of the test for diffrential abundance is a table with columns Protein, Label (of the comparison),
log2 fold change (log2FC), standard error of the log2 fold change (SE), test statistic of the Student test
(Tvalue), degree of freedom of the Student test (DF), raw p-values (pvalue), p-values adjusted among all the
proteins in the specific comparison using the approach by Benjamini and Hochberg (adj.pvalue). The cutoff
of the adjusted p-value corresponds to the cutoff of the False Discovery Rate (Benjamini and Hochberg 1955).
The positive values of log2FC for Label=C2-C1 indicate evidence in favor of C2 > C1 (i.e. proteins upregulated
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in C2), while the negative values indicate evidence in favor of C2 < C1 (i.e. proteins downregulated in C2), as
compared to C1. The same model can be used to perform several comparisons of conditions simultaneously
in the same protein.

NOTE issue column shows if there is any issue for inference in corresponding protein and comparison,
for example, OneConditionMissing or CompleteMissing. If one of condition for compariosn is completely
missing, it would flag with OneConditionMissiong with adj.pvalue=0 and log2FC=Inf or -Inf even
though pvalue=NA. For example, if you want to compare ‘Condition A - Condition B’, but condition B
has complete missing, log2FC=Inf and adj.pvalue=0. SE, Tvalue, and pvalue will be NA. if you want
to compare ‘Condition A - Condition B’, but condition A has complete missing, then log2FC=-Inf and
adj.pvalue=0. But, please be careful for using this log2FC and adj.pvalue.

Based on the comparison results and desired significance level, a short list of the differentially abundant
proteins can be obtained for further investigation:
# get only significant proteins and comparisons among all comparisons
# To simultaneoulsy controll the overall FDR at the level, 0.05
SignificantProteins <- with(DDA2009.comparisons,

ComparisonResult[ComparisonResult$adj.pvalue < 0.05, ])
nrow(SignificantProteins)

## [1] 34

4.1.6 Verifying the assumption of the model

Results based on the statistical models are accurate as long as the assumptions of the models hold. Here we
focus on the assumption of the Normal distribution of the measurement errors, and also on the assumption of
constant variance of the measurement errors (if this option is specified in the model above). The assumptions
can be checked by examining the residuals of the model fit (i.e., the deviations of the observed intensities of
the transition from their model-based predictions).

modelBasedQCPlots function generates residual plots and Normal quantile-quantile plots for each protein,
taking as input the results of model fitting and testing in groupComparison. Normal quantile-quantile plot
with the option type='QQPlots' illustrates that such deviations from constant variance can be mistaken
for deviations from Normality. Only large deviations of transition intensities from the straight line are
problematic.

Residual plot with the option type='ResidualPlots' shows variance of the residuals that is associated with
the mean feature intensity. Any specific pattern, such as increasing or decreasing by predicted abundance, is
problematic.
# normal quantile-quantile plots
modelBasedQCPlots(data=DDA2009.comparisons, type="QQPlots",

width=5, height=5, address="DDA2009_proposed_")

# residual plots
modelBasedQCPlots(data=DDA2009.comparisons, type="ResidualPlots",

width=5, height=5, address="DDA2009_proposed_")
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For more details, visit the help file using the following code.
?modelBasedQCPlots

4.1.7 Visualization of differentially abundant proteins

Volcano plots Volcano plots visualize the outcome of one comparison between conditions for all the
proteins, and combine the information on statistical and practical significance. The y-axis displays the
FDR-adjusted p-values on the negative log10 scale, representing statistical significance. The horizontal
dashed line shows the FDR cutoff. The points above the FDR cutoff line are statistically significant proteins
that are differentially abundant across conditions. These points are colored in red and blue for upregulated
and downregulated proteins, respectively. The x-axis is the model-based estimate of fold change on log
scale (the base of logarithm transform is the same as specified in the logTrans option of the dataProcess
function), and represents practical significance. It is possible to specify a practical significance cutoff based
on the estimate of fold change in addition to the statistical significance cutoff. If the fold change cutoff is
specified, the points above the horizontal cutoff line but within the vertical cutoff line will be considered as
not differentially abundant (and will be colored in black). The practical significance cutoff should only be
applied in addition to the statistical significance cutoff (i.e., the fold change alone does not present enough
evidence for differential abundance).
groupComparisonPlots(data = DDA2009.comparisons$ComparisonResult, type = 'VolcanoPlot',

width=5, height=5, address="DDA2009_proposed_")

‘VolcanoPlot.pdf’ will be saved under the folder you assigned. It has the plots per comparison defined in
contrast.matrix. Please check ?groupComparisonPlots for detail, such as labelling protein names, size of
dots, font sizes, etc. Below is one of volcano plots, for comparison ‘C1-C6’ including protein name labelling.
Protein name will be shown for significant proteins, without overlapping protein names each other.
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Heatmap Heatmaps illustrate the patterns of up- and down-regulation of proteins in several comparisons.
Columns in the heatmaps are comparison of conditions assigned in contrast.matrix, and rows are proteins.
The heatmaps display signed FDR-adjusted p-values of the tests, colored in red/blue for significantly up-
/down-regulated proteins, while taking into account the specified FDR cutoff and the additional optional
fold change cutoff. Brighter colors indicate stronger evidence in favor of differential abundance. Black color
represents proteins that are not significantly differentially abundant.

NOTE To draw heatmap, at least two comparisons are needed.

The rows and columns of the heatmaps can be ordered with the option clustering, which performs hierarchical
clustering with the Ward method (minimum variance). The option clustering='protein' (default) clusters
the rows (proteins) in the space of comparisons, based on the values of (sign of comparison)·(-log2(adjusted
p-values)). The option clustering='comparison' clusters the columns in the space of proteins, based on
the values of (sign of comparison)·(-log2(adjusted p-value)). The option clustering='both reorders both
columns and rows.
groupComparisonPlots(data = DDA2009.comparisons$ComparisonResult, type = 'Heatmap')

‘Heatmap.pdf’ will be saved under the folder you assigned. Below is one example, showing the results for
several comparisons simultaneously.
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Comparison plots Comparison plots illustrate model-based estimates of log-fold changes, and the associated
uncertainty, in several comparisons of conditions for one protein. X-axis is the comparison of interest. Y-axis
is the log fold change. The dots are the model-based estimates of log-fold change, and the error bars are
the model-based 95% confidence intervals (the option sig can be used to change the significance level of
significance). For simplicity, the confidence intervals are adjusted for multiple comparisons within protein
only, using the Bonferroni approach. For proteins with N comparisons, the individual confidence intervals are
at the level of 1-sig/N.
groupComparisonPlots(data=DDA2009.comparisons$ComparisonResult, type="ComparisonPlot",

width=5, height=5, address="DDA2009_proposed_")

For further details, such as labelling protein names, size of dots, font sizes, etc., visit the help file using the
following code.
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?groupComparisonPlots

4.1.8 Sample size calculation for a future experiment

This last analysis step views the dataset as a pilot study of a future experiment, utilizes its variance
components, and calculates the minimal number of replicates required in a future experiment to achieve
the desired statistical power. The calculation is performed by the function designSampleSize, which takes
as input the fitted model in groupComparison. Sample size calculation assumes same experimental design
(i.e. group comparison, time course or paired design) as in the current dataset, and uses the model fit to
estimate the median variance components across all the proteins. Finally, sample size calculation assumes that
a large proportion of proteins (specifically, 99%) will not change in abundance in the future experiment. This
assumption also provides conservative results. Using the estimated variance components, the function relates
the number of biological replicates per condition (numSample, rounded to 0 decimal), average statistical power
across all the proteins (power), minimal fold change that we would like to detect (can be specified as a range,
e.g. desiredFC=c(1.1, 2)), and the False Discovery Rate (FDR). The user should specify all these quantities
but one, and the function will solve for the remainder. The quantity to solve for should be set to = TRUE.
# Minimal number of biological replicates per condition
result.sample <- designSampleSize(data=DDA2009.comparisons$FittedModel, numSample=TRUE,

desiredFC=c(1.25, 3), FDR=0.05, power=0.8)
result.sample

## desiredFC numSample FDR power CV
## 1 1.250 35 0.05 0.8 0.004
## 2 1.275 30 0.05 0.8 0.005
## 3 1.300 25 0.05 0.8 0.006
## 4 1.325 22 0.05 0.8 0.007
## 5 1.350 19 0.05 0.8 0.007
## 6 1.375 17 0.05 0.8 0.008
## 7 1.400 16 0.05 0.8 0.009
## 8 1.425 14 0.05 0.8 0.010
## 9 1.450 13 0.05 0.8 0.010
## 10 1.475 12 0.05 0.8 0.011
## 11 1.500 11 0.05 0.8 0.012
## 12 1.525 10 0.05 0.8 0.013
## 13 1.550 9 0.05 0.8 0.014
## 14 1.575 9 0.05 0.8 0.014
## 15 1.600 8 0.05 0.8 0.015
## 16 1.625 7 0.05 0.8 0.017
## 17 1.650 7 0.05 0.8 0.017
## 18 1.675 7 0.05 0.8 0.016
## 19 1.700 6 0.05 0.8 0.019
## 20 1.725 6 0.05 0.8 0.018
## 21 1.750 6 0.05 0.8 0.018
## 22 1.775 5 0.05 0.8 0.022
## 23 1.800 5 0.05 0.8 0.021
## 24 1.825 5 0.05 0.8 0.021
## 25 1.850 5 0.05 0.8 0.021
## 26 1.875 4 0.05 0.8 0.026
## 27 1.900 4 0.05 0.8 0.025
## 28 1.925 4 0.05 0.8 0.025
## 29 1.950 4 0.05 0.8 0.025
## 30 1.975 4 0.05 0.8 0.024
## 31 2.000 4 0.05 0.8 0.024
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## 32 2.025 4 0.05 0.8 0.024
## 33 2.050 3 0.05 0.8 0.031
## 34 2.075 3 0.05 0.8 0.031
## 35 2.100 3 0.05 0.8 0.030
## 36 2.125 3 0.05 0.8 0.030
## 37 2.150 3 0.05 0.8 0.030
## 38 2.175 3 0.05 0.8 0.029
## 39 2.200 3 0.05 0.8 0.029
## 40 2.225 3 0.05 0.8 0.029
## 41 2.250 3 0.05 0.8 0.028
## 42 2.275 3 0.05 0.8 0.028
## 43 2.300 3 0.05 0.8 0.028
## 44 2.325 2 0.05 0.8 0.041
## 45 2.350 2 0.05 0.8 0.041
## 46 2.375 2 0.05 0.8 0.040
## 47 2.400 2 0.05 0.8 0.040
## 48 2.425 2 0.05 0.8 0.039
## 49 2.450 2 0.05 0.8 0.039
## 50 2.475 2 0.05 0.8 0.039
## 51 2.500 2 0.05 0.8 0.038
## 52 2.525 2 0.05 0.8 0.038
## 53 2.550 2 0.05 0.8 0.038
## 54 2.575 2 0.05 0.8 0.037
## 55 2.600 2 0.05 0.8 0.037
## 56 2.625 2 0.05 0.8 0.036
## 57 2.650 2 0.05 0.8 0.036
## 58 2.675 2 0.05 0.8 0.036
## 59 2.700 2 0.05 0.8 0.035
## 60 2.725 2 0.05 0.8 0.035
## 61 2.750 2 0.05 0.8 0.035
## 62 2.775 2 0.05 0.8 0.034
## 63 2.800 2 0.05 0.8 0.034
## 64 2.825 2 0.05 0.8 0.034
## 65 2.850 2 0.05 0.8 0.034
## 66 2.875 2 0.05 0.8 0.033
## 67 2.900 2 0.05 0.8 0.033
## 68 2.925 2 0.05 0.8 0.033
## 69 2.950 1 0.05 0.8 0.065
## 70 2.975 1 0.05 0.8 0.064
## 71 3.000 1 0.05 0.8 0.064
# Power calculation
result.power <- designSampleSize(data=DDA2009.comparisons$FittedModel, numSample=3,

desiredFC=c(1.25, 3), FDR=0.05, power=TRUE)
result.power

## desiredFC numSample FDR power CV
## 1 1.250 3 0.05 0.01 0.051
## 2 1.275 3 0.05 0.01 0.050
## 3 1.300 3 0.05 0.01 0.049
## 4 1.325 3 0.05 0.01 0.048
## 5 1.350 3 0.05 0.01 0.047
## 6 1.375 3 0.05 0.01 0.046
## 7 1.400 3 0.05 0.01 0.046
## 8 1.425 3 0.05 0.01 0.045
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## 9 1.450 3 0.05 0.01 0.044
## 10 1.475 3 0.05 0.01 0.043
## 11 1.500 3 0.05 0.02 0.043
## 12 1.525 3 0.05 0.03 0.042
## 13 1.550 3 0.05 0.04 0.041
## 14 1.575 3 0.05 0.06 0.041
## 15 1.600 3 0.05 0.08 0.040
## 16 1.625 3 0.05 0.10 0.039
## 17 1.650 3 0.05 0.13 0.039
## 18 1.675 3 0.05 0.16 0.038
## 19 1.700 3 0.05 0.20 0.038
## 20 1.725 3 0.05 0.23 0.037
## 21 1.750 3 0.05 0.27 0.036
## 22 1.775 3 0.05 0.31 0.036
## 23 1.800 3 0.05 0.35 0.035
## 24 1.825 3 0.05 0.39 0.035
## 25 1.850 3 0.05 0.43 0.034
## 26 1.875 3 0.05 0.47 0.034
## 27 1.900 3 0.05 0.51 0.034
## 28 1.925 3 0.05 0.55 0.033
## 29 1.950 3 0.05 0.58 0.033
## 30 1.975 3 0.05 0.61 0.032
## 31 2.000 3 0.05 0.65 0.032
## 32 2.025 3 0.05 0.68 0.032
## 33 2.050 3 0.05 0.71 0.031
## 34 2.075 3 0.05 0.73 0.031
## 35 2.100 3 0.05 0.76 0.030
## 36 2.125 3 0.05 0.78 0.030
## 37 2.150 3 0.05 0.80 0.030
## 38 2.175 3 0.05 0.82 0.029
## 39 2.200 3 0.05 0.84 0.029
## 40 2.225 3 0.05 0.86 0.029
## 41 2.250 3 0.05 0.87 0.028
## 42 2.275 3 0.05 0.88 0.028
## 43 2.300 3 0.05 0.90 0.028
## 44 2.325 3 0.05 0.91 0.027
## 45 2.350 3 0.05 0.92 0.027
## 46 2.375 3 0.05 0.93 0.027
## 47 2.400 3 0.05 0.93 0.027
## 48 2.425 3 0.05 0.94 0.026
## 49 2.450 3 0.05 0.95 0.026
## 50 2.475 3 0.05 0.95 0.026
## 51 2.500 3 0.05 0.96 0.026
## 52 2.525 3 0.05 0.96 0.025
## 53 2.550 3 0.05 0.97 0.025
## 54 2.575 3 0.05 0.97 0.025
## 55 2.600 3 0.05 0.98 0.025
## 56 2.625 3 0.05 0.98 0.024
## 57 2.650 3 0.05 0.98 0.024
## 58 2.675 3 0.05 0.98 0.024
## 59 2.700 3 0.05 0.99 0.024
## 60 2.725 3 0.05 0.99 0.023
## 61 2.750 3 0.05 0.99 0.023
## 62 2.775 3 0.05 0.99 0.023
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## 63 2.800 3 0.05 0.99 0.023
## 64 2.825 3 0.05 0.99 0.023
## 65 2.850 3 0.05 0.99 0.022
## 66 2.875 3 0.05 0.99 0.022
## 67 2.900 3 0.05 0.99 0.022
## 68 2.925 3 0.05 0.99 0.022
## 69 2.950 3 0.05 0.99 0.022
## 70 2.975 3 0.05 0.99 0.021
## 71 3.000 3 0.05 0.99 0.021

For further details, visit the help file using the following code.
?designSampleSize

Visualization of sample size calculations The calculated relationship between the number of biological
replicates per condition (numSample), average statistical power across all the proteins (power), minimal fold
change that we would like to detect (desiredFC), and the False Discovery Rate (FDR) can be visualized using
the function designSampleSizePlots. The function takes as input the output of designSampleSize.

For further details, visit the help file using the following code.
?designSampleSizePlots

4.1.9 Quantification of protein abundance in individual samples or conditions

Many downstream analysis steps (such as clustering or classification of individual samples in the space of
their protein profiles) require summary values of protein abundance in each biological replicate or in each
condition, on a relative scale that is comparable between runs.

dataProcess function performs model-based run-level summarization. quantification function en-
ables subject-level summarization or group-level summarization with the run-level summarization from
dataProcess.

The option, type='sample'(default), performs sample quantification, i.e. it outputs the estimates of relative
protein abundance in each biological replicate. If there are technical replicates for biological replicates,
sample quantification will be the median among technical replicates. If there is no technical replicate for
biological replicate (sample), sample quantification will be the same as run-level summarization. In presence
of completely missing values in biological replicate, the estimates will be zero.
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The option type='group' performs group quantification, i.e. it outputs the estimates of relative protein
abundance in each condition, summarized over the biological replicates (median among sample quantification).
In presence of completely missing values in a condition, the estimates will be zero.

MSstats supports two output formats. The option format='matrix' (default) outputs an array where rows
are proteins, and columns are conditions (for group quantification), or combinations of biological replicate
and condition ids (for sample quantification). The option format='long' produces an array where each row
corresponding to relative protein abundances, and columns are Protein, Condition, LogIntensities (and
BioReplicate in the case of sample quantification).
subQuant <- quantification(DDA2009.proposed)
head(subQuant)

## Protein C1_1 C2_1 C3_1 C4_1 C5_1 C6_1
## 1: bovine 20.85653 21.60443 14.32690 16.10441 17.63141 19.27802
## 2: chicken 18.48792 19.43204 20.41274 22.42284 15.92462 17.09803
## 3: cyc_horse 20.25927 21.33967 22.22028 15.85252 17.62720 18.45536
## 4: myg_horse 22.66495 14.73701 14.99667 18.61740 20.26392 21.52022
## 5: rabbit 14.89507 15.88492 17.43767 20.19014 21.27964 22.07550
## 6: yeast 17.26792 19.19987 20.71073 22.73666 24.06156 16.38660
groupQuant <- quantification(DDA2009.proposed, type='group')
head(groupQuant)

## Protein C1 C2 C3 C4 C5 C6
## 1: bovine 20.85653 21.60443 14.32690 16.10441 17.63141 19.27802
## 2: chicken 18.48792 19.43204 20.41274 22.42284 15.92462 17.09803
## 3: cyc_horse 20.25927 21.33967 22.22028 15.85252 17.62720 18.45536
## 4: myg_horse 22.66495 14.73701 14.99667 18.61740 20.26392 21.52022
## 5: rabbit 14.89507 15.88492 17.43767 20.19014 21.27964 22.07550
## 6: yeast 17.26792 19.19987 20.71073 22.73666 24.06156 16.38660

For further details, visit the help file using the following code.
?quantification

4.2 Suggested workflow with Skyline output for DDA
This section describes steps and considerations to properly format data processed by Skyline, prior to the
MSstats analysis. In the following example, the raw files for the benchmark dataset (Choi, M. and Eren-Dogu,
Z. F. and Colangelo, C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and Lam, H. and
Neubert, T. A. and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B. and Vitek, O.
2017) are used. Dataset was processed and quantified with Skyline (3.5.0.9319). Details for data processing
are described in Choi, et al., 2017 and Panorama Web https://panoramaweb.org/iPRG-2015.url for iProphet
cut-off 0.15. The datasets and details for data processing are available in MassIVE.quant, MSV000079843,
Reanalysis : RMSV000000249.1

4.2.1 Load Skyline output

This required input data is generated automatically when using MSstats report format in Skyline. We first
load and access the dataset processed by Skyline. The name of saved file from Skyline using MSstats report
format is ‘Choi2017_DDA_Skyline_input.csv’ under the folder named dda_skyline.
# Read output from skyline
raw <- read.csv("dda_skyline/Choi2017_DDA_Skyline_input.csv")
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We can read csv file. Here we will load R data file which is the exactly same data in Choi2017_DDA_Skyline_input.csv
file.
# Load R data, which is convered from csv file, output from skyline
load("dda_skyline/iprg.skyline.rda")
raw <- iprg.skyline
head(raw)

## ProteinName PeptideSequence PeptideModifiedSequence
## 1 DECOY_sp|P0CF18|YM085_YEAST KDMYGNPFQK KDM[+16]YGNPFQK
## 2 DECOY_sp|P0CF18|YM085_YEAST KDMYGNPFQK KDM[+16]YGNPFQK
## 3 DECOY_sp|P0CF18|YM085_YEAST KDMYGNPFQK KDM[+16]YGNPFQK
## 4 DECOY_sp|P0CF18|YM085_YEAST KDMYGNPFQK KDM[+16]YGNPFQK
## 5 DECOY_sp|P0CF18|YM085_YEAST KDMYGNPFQK KDM[+16]YGNPFQK
## 6 DECOY_sp|P0CF18|YM085_YEAST KDMYGNPFQK KDM[+16]YGNPFQK
## PrecursorCharge PrecursorMz FragmentIon ProductCharge ProductMz
## 1 3 415.1974 precursor 3 415.1974
## 2 3 415.1974 precursor 3 415.1974
## 3 3 415.1974 precursor 3 415.1974
## 4 3 415.1974 precursor 3 415.1974
## 5 3 415.1974 precursor 3 415.1974
## 6 3 415.1974 precursor 3 415.1974
## IsotopeLabelType Condition BioReplicate FileName
## 1 light Condition1 1 JD_06232014_sample1-A.raw
## 2 light Condition1 2 JD_06232014_sample1_B.raw
## 3 light Condition1 3 JD_06232014_sample1_C.raw
## 4 light Condition2 4 JD_06232014_sample2_A.raw
## 5 light Condition2 5 JD_06232014_sample2_B.raw
## 6 light Condition2 6 JD_06232014_sample2_C.raw
## Area StandardType Truncated DetectionQValue
## 1 71765.046875 NA False #N/A
## 2 147327.265625 NA False #N/A
## 3 1373396.5 NA False #N/A
## 4 66387.4453125 NA False #N/A
## 5 107736.453125 NA False #N/A
## 6 380812.0625 NA False #N/A

Annotation information is required to fill in Condition and BioReplicate for corresponding Run information.
Users have to prepare as csv or txt file like ‘Choi2017_DDA_Skyline_annotation.csv’, which includes Run,
Condition, and BioReplicate information, and load it in R.
annot <- read.csv("dda_skyline/Choi2017_DDA_Skyline_annotation.csv", header=TRUE)
annot

## Run Condition BioReplicate
## 1 JD_06232014_sample1-A.raw Condition1 1
## 2 JD_06232014_sample1_B.raw Condition1 1
## 3 JD_06232014_sample1_C.raw Condition1 1
## 4 JD_06232014_sample2_A.raw Condition2 2
## 5 JD_06232014_sample2_B.raw Condition2 2
## 6 JD_06232014_sample2_C.raw Condition2 2
## 7 JD_06232014_sample3_A.raw Condition3 3
## 8 JD_06232014_sample3_B.raw Condition3 3
## 9 JD_06232014_sample3_C.raw Condition3 3
## 10 JD_06232014_sample4-A.raw Condition4 4
## 11 JD_06232014_sample4_B.raw Condition4 4
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## 12 JD_06232014_sample4_C.raw Condition4 4

4.2.2 Preprocessing with DDA experiment from Skyline output

The input data for MSstats is required to contain variables of ProteinName, PeptideSequence,
PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run,
Intensity. These variable names should be fixed. MSstats input from Skyline adapts the column scheme
of the dataset so that it fits MSstats input format. However there are several extra column names and
also some of them need to be changed. SkylinetoMSstatsFormat function helps pre-processing for making
right format of MSstats input from Skyline output. For example, it renames some column name, and
replace truncated peak intensities with NA. Another important step is to handle isotopic peaks before using
dataProcess. The output from Skyline for DDA experiment has several measurements of peak area from
the monoisotopic, M+1 and M+2 peaks. To get a robust measure of peptide intensity, we can sum over
isotopic peaks per peptide or use the highest peak. Here we take a summation per peptide ion.

Here is the summary of pre-processing steps in SkylinetoMSstatsFormat function.

[](img/(MSstats-converter-skyline.png){width=70%}

Options for SkylinetoMSstatsFormat

• annotation : name of ‘annotation.txt’ or ‘annotation.csv’ data which includes Condition, BioReplicate,
and Run. If annotation is already complete in Skyline, use annotation=NULL (default). It will use the
annotation information from input.

• removeiRT : TRUE (default) will remove the proteins or peptides which are labeld ‘iRT’ in ‘Standard-
Type’ column. FALSE will keep them.

• filter_with_Qvalue : TRUE (default) will filter out the intensities that have greater than
qvalue_cutoff in DetectionQValue column. Those intensities will be replaced with zero and will be
considered as censored missing values for imputation purpose.

• qvalue_cutoff : Cutoff for DetectionQValue. Default is 0.01.

• useUniquePeptide : TRUE (default) removes peptides that are assigned for more than one proteins.
We assume to use unique peptide for each protein.

• fewMeasurement : remove or keep the featurew with few measurements.

– ‘remove’ : (default) remove the features that have 1 or 2 measurements across runs.
– ‘keep’ : keep all the features. However, it could generate the error in the step for fitting the

statistical model.

• removeOxidationMpeptides : TRUE will remove the peptides including ‘oxidation (M)’ in modifica-
tion. FALSE is default.

• removeProtein_with1Feature : TRUE will remove the proteins which have only 1 peptide and
charge. FALSE is default.

For further details, visit the help file using the following code.
?SkylinetoMSstatsFormat

Now, we use SkylinetoMSstatsFormat function for this example dataset. We chose to remove the proteins
with only 1 peptide ion.
# reformating and pre-processing for Skyline output.
quant <- SkylinetoMSstatsFormat(raw,

annotation = annot,
removeProtein_with1Feature = TRUE)

## INFO [2023-02-28 10:22:52] ** Raw data from Skyline imported successfully.
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## Warning in eval(jsub, SDenv, parent.frame()): NAs introduced by coercion

## INFO [2023-02-28 10:22:54] ** Raw data from Skyline cleaned successfully.
## INFO [2023-02-28 10:22:54] ** Using provided annotation.
## INFO [2023-02-28 10:22:54] ** Run labels were standardized to remove symbols such as '.' or '%'.
## INFO [2023-02-28 10:22:54] ** The following options are used:
## - Features will be defined by the columns: IsotopeLabelType, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge
## - Shared peptides will be removed.
## - Proteins with a single feature will be removed.
## - Features with less than 3 measurements across runs will be removed.
## INFO [2023-02-28 10:22:54] ** Rows with values of StandardType equal to iRT are removed
## INFO [2023-02-28 10:22:55] ** Intensities with values of Truncated equal to TRUE are replaced with NA
## INFO [2023-02-28 10:22:55] ** Intensities with values not smaller than 0.01 in DetectionQValue are replaced with 0
## INFO [2023-02-28 10:22:55] ** Sequences containing DECOY, Decoys are removed.
## INFO [2023-02-28 10:22:57] ** Three isotopic preaks per feature and run are summed
## INFO [2023-02-28 10:22:58] ** Features with all missing measurements across runs are removed.
## INFO [2023-02-28 10:22:58] ** Shared peptides are removed.
## INFO [2023-02-28 10:22:59] ** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows: sum
## INFO [2023-02-28 10:22:59] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:22:59] Proteins with a single feature are removed.
## INFO [2023-02-28 10:23:00] ** Run annotation merged with quantification data.
## INFO [2023-02-28 10:23:00] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:23:00] ** Fractionation handled.
## INFO [2023-02-28 10:23:01] ** Updated quantification data to make balanced design. Missing values are marked by NA
## INFO [2023-02-28 10:23:01] ** Finished preprocessing. The dataset is ready to be processed by the dataProcess function.

This function shows the progress. The output of SkylinetoMSstatsFormat, called quant, is ready for next
step.
head(quant)

## ProteinName PeptideSequence PrecursorCharge FragmentIon
## 1 sp|P38915|SPT8_YEAST AAAAGAGGAGDSGDAVTK 2 NA
## 2 sp|P38915|SPT8_YEAST AAAAGAGGAGDSGDAVTK 2 NA
## 3 sp|P38915|SPT8_YEAST AAAAGAGGAGDSGDAVTK 2 NA
## 4 sp|P38915|SPT8_YEAST AAAAGAGGAGDSGDAVTK 2 NA
## 5 sp|P38915|SPT8_YEAST AAAAGAGGAGDSGDAVTK 2 NA
## 6 sp|P38915|SPT8_YEAST AAAAGAGGAGDSGDAVTK 2 NA
## ProductCharge IsotopeLabelType Condition BioReplicate
## 1 NA light Condition1 1
## 2 NA light Condition1 1
## 3 NA light Condition1 1
## 4 NA light Condition2 2
## 5 NA light Condition2 2
## 6 NA light Condition2 2
## Run Fraction Intensity
## 1 JD_06232014_sample1-Araw 1 10839770
## 2 JD_06232014_sample1_Braw 1 0
## 3 JD_06232014_sample1_Craw 1 15918394
## 4 JD_06232014_sample2_Araw 1 7846124
## 5 JD_06232014_sample2_Braw 1 14196048
## 6 JD_06232014_sample2_Craw 1 12240984
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4.2.3 Different options for Skyline in dataProcess

The difference between output from Skyline and other spectral processing tool is that Skyline distinguishes
random missing (NA) by technical issues and low noisy intensity due to less than limit of etection. The output
from Skyline can have both NA (expect small number of NAs or none of them) and very small intensity close
to zero (less than 1 in intensity) and those should be treated different types of missing. In dataProcess,
users need to use censoredInt='0' for Skyline output, which means to distinguish between NA as random
missing and 0 as censored missing.
skyline.proposed <- dataProcess(quant,

normalization='equalizeMedian',
summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="0", ## !! important
MBimpute=TRUE,
maxQuantileforCensored=0.999)

Further steps is the same as in general workflow (section 4.1).

4.3 Suggested workflow with MaxQuant output for DDA
The following R code chunks show steps to format a MaxQuant output for analysis by MSstats. In the
following example, the raw files for the benchmark dataset (Choi, M. and Eren-Dogu, Z. F. and Colangelo,
C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and Lam, H. and Neubert, T. A.
and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B. and Vitek, O. 2017) are used.
MS/MS spectra were searched using MaxQuant (v1.5.1.2) and Andromeda as search engine. The datasets and
details for data processing are available in MassIVE.quant, MSV000079843, Reanalysis : RMSV000000249.2

4.3.1 Load MaxQuant outputs

Three files should be prepared before MSstats. Two files, ‘proteinGroups.txt’ and ‘evidence.txt’ are outputs
from MaxQuant.
## First, get protein ID information
proteinGroups <- read.table("dda_maxquant/Choi2017_DDA_MaxQuant_proteinGroups.txt", sep = "\t", header = TRUE)

## Read in MaxQuant file: evidence.txt
infile <- read.table("dda_maxquant/Choi2017_DDA_MaxQuant_evidence.txt", sep = "\t", header = TRUE)

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding
Run information. Users have to prepare as csv or txt file like ‘Choi2017_DDA_MaxQuant_annotation.csv’,
which includes Run, Condition, and BioReplicate information, and load it in R.
## Read in annotation including condition and biological replicates: annotation.csv
annot <- read.csv("dda_maxquant/Choi2017_DDA_MaxQuant_annotation.csv", header = TRUE)
annot

## Raw.file Condition BioReplicate Experiment IsotopeLabelType
## 1 JD_06232014_sample1-A Condition1 1 sample1_A L
## 2 JD_06232014_sample2_A Condition2 2 sample2_A L
## 3 JD_06232014_sample4_B Condition4 4 sample4_B L
## 4 JD_06232014_sample1_B Condition1 1 sample1_B L
## 5 JD_06232014_sample1_C Condition1 1 sample1_C L
## 6 JD_06232014_sample2_B Condition2 2 sample2_B L
## 7 JD_06232014_sample2_C Condition2 2 sample2_C L
## 8 JD_06232014_sample3_A Condition3 3 sample3_A L
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## 9 JD_06232014_sample3_B Condition3 3 sample3_B L
## 10 JD_06232014_sample3_C Condition3 3 sample3_C L
## 11 JD_06232014_sample4-A Condition4 4 sample4_A L
## 12 JD_06232014_sample4_C Condition4 4 sample4_C L

4.3.2 Preprocessing with DDA experiment from MaxQuant output

MaxQtoMSstatsFormat function helps pre-processing for making right format of MSstats input from MaxQuant
output. Basically, this function gets peptide ion intensity from ‘evidence.txt’ file. In addition, there are
several steps to filter out or to modify the data in order to get required information.

Here is the summary of pre-processing steps in MaxQtoMSstatsFormat function.

Options for MaxQtoMSstatsFormat

• evidence : name of ‘evidence.txt’ data, which includes feature-level data

• proteinGroups : name of ‘proteinGroups.txt’ data. It needs to matching protein group ID. If
proteinGroups=NULL, use ‘Proteins’ column in ‘evidence.txt’.

• annotation :name of ‘annotation.txt’ or ‘annotation.csv’ data which includes Raw.file, Condition,
BioReplicate, Run, and IsotopeLabelType information.

• proteinID : which column in evidence.txt will be used for ProteinName in MSstats.

– ‘Proteins’ : (default) Proteins column will be used.
– ‘Leading.razor.protein’ : Leading.razor.protein column will be used.

• useUniquePeptide : TRUE (default) removes peptides that are assigned for more than one proteins.
We assume to use unique peptide for each protein.

• summaryforMultipleRows : max(default), sum, or mean. MSstats assumes that there is only one
measurement (peak intensity) for one feature and one run. When there are multiple measurements for
certain feature and certain run, MSstats need to know which measurements need to be used for further
analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and
one run.

• fewMeasurement : remove or keep the featurew with few measurements.

– ‘remove’ : (default) remove the features that have 1 or 2 measurements across runs.
– ‘keep’ : keep all the features. However, it could generate the error in the step for fitting the

statistical model.

• removeMpeptides : TRUE will remove the peptides including ‘M’ sequence. FALSE is default.
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• removeOxidationMpeptides : TRUE will remove the peptides including ‘oxidation (M)’ in modifica-
tion. FALSE is default.

• removeProtein_with1Peptide : TRUE will remove the proteins which have only 1 peptide and
charge. FALSE is default.

For further details, visit the help file using the following code.
## check options for converting format
?MaxQtoMSstatsFormat

Now, we use MaxQtoMSstatsFormat function for this example dataset. We chose to remove the proteins with
only 1 peptide ion.
quant <- MaxQtoMSstatsFormat(evidence=infile, annotation=annot, proteinGroups=proteinGroups,

removeProtein_with1Peptide=TRUE)

## INFO [2023-02-28 10:23:21] ** Raw data from MaxQuant imported successfully.
## INFO [2023-02-28 10:23:21] ** Rows with values of Potentialcontaminant equal to + are removed
## INFO [2023-02-28 10:23:21] ** Rows with values of Reverse equal to + are removed
## INFO [2023-02-28 10:23:22] ** Rows with values of Potentialcontaminant equal to + are removed
## INFO [2023-02-28 10:23:22] ** Rows with values of Reverse equal to + are removed
## INFO [2023-02-28 10:23:22] ** Rows with values of Onlyidentifiedbysite equal to + are removed
## INFO [2023-02-28 10:23:22] ** + Contaminant, + Reverse, + Potential.contaminant, + Only.identified.by.site proteins are removed.
## INFO [2023-02-28 10:23:23] ** Raw data from MaxQuant cleaned successfully.
## INFO [2023-02-28 10:23:23] ** Using provided annotation.
## INFO [2023-02-28 10:23:23] ** Run labels were standardized to remove symbols such as '.' or '%'.
## INFO [2023-02-28 10:23:23] ** The following options are used:
## - Features will be defined by the columns: PeptideSequence, PrecursorCharge
## - Shared peptides will be removed.
## - Proteins with a single feature will be removed.
## - Features with less than 3 measurements across runs will be removed.
## INFO [2023-02-28 10:23:23] ** Features with all missing measurements across runs are removed.
## INFO [2023-02-28 10:23:23] ** Shared peptides are removed.
## INFO [2023-02-28 10:23:23] ** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows: max
## INFO [2023-02-28 10:23:24] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:23:24] Proteins with a single feature are removed.
## INFO [2023-02-28 10:23:24] ** Run annotation merged with quantification data.
## INFO [2023-02-28 10:23:24] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:23:24] ** Fractionation handled.
## INFO [2023-02-28 10:23:25] ** Updated quantification data to make balanced design. Missing values are marked by NA
## INFO [2023-02-28 10:23:25] ** Finished preprocessing. The dataset is ready to be processed by the dataProcess function.

This function shows the progress. The output of MaxQtoMSstatsFormat, called quant, is ready for next step.
## now 'quant' is ready for MSstats
head(quant)

## ProteinName PeptideSequence PrecursorCharge FragmentIon ProductCharge
## 1 P38998 (ac)AAVTLHLR 2 NA NA
## 2 P38998 (ac)AAVTLHLR 2 NA NA
## 3 P38998 (ac)AAVTLHLR 2 NA NA
## 4 P38998 (ac)AAVTLHLR 2 NA NA
## 5 P38998 (ac)AAVTLHLR 2 NA NA
## 6 P38998 (ac)AAVTLHLR 2 NA NA
## IsotopeLabelType Condition BioReplicate Run Fraction
## 1 L Condition1 1 JD_06232014_sample1-A 1
## 2 L Condition1 1 JD_06232014_sample1_B 1
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## 3 L Condition1 1 JD_06232014_sample1_C 1
## 4 L Condition2 2 JD_06232014_sample2_A 1
## 5 L Condition2 2 JD_06232014_sample2_B 1
## 6 L Condition2 2 JD_06232014_sample2_C 1
## Intensity
## 1 NA
## 2 8792900
## 3 10744000
## 4 7647300
## 5 11407000
## 6 10736000

4.3.3 Different options for MaxQuant in dataProcess

MaxQuant has certain or fixed threshold for intensity value internally as an parameter. Intensities less than
the threshold are reported as NA. All missing values are NA in output from MaxQuant. In dataProcess,
users need to use censoredInt='NA'. Users can used the same choice for other options.
maxquant.proposed <- dataProcess(quant,

normalization='equalizeMedian',
summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="NA", ## !! important for MaxQuant
MBimpute=TRUE,
maxQuantileforCensored=0.999)

Further steps is the same as in general workflow (section 4.1).

4.4 Suggested workflow with Progenesis output for DDA
This section describes steps and considerations to properly format data processed by Progenesis, prior to
the MSstats analysis. In the following example, the raw files for the benchmark dataset (Choi, M. and
Eren-Dogu, Z. F. and Colangelo, C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and
Lam, H. and Neubert, T. A. and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B.
and Vitek, O. 2017) are used. Peptide features were identified with the Progenesis algorithm (v4.0.6403),
aligned across all files, and annotated with the peptide identification resulting from the database search result
from Comet. The datasets and details for data processing are available in MassIVE.quant, MSV000079843,
Reanalysis : RMSV000000249.3

4.4.1 Load Progenesis output

Here is the expected input for MSstats, which is output of Progenesis.
## First, read output of Progenesis
raw <- read.csv("dda_progenesis/Choi2017_DDA_Progenesis_input.csv")
head(raw)

## X X.1 X.2 X.3 X.4
## 1
## 2 # Retention time (min) Charge m/z Measured mass
## 3 16 52.5563333333333 2 501.781277638303 1001.54800234285
## 4 32 38.15255 2 474.251481407549 946.488409881339
## 5 11167 36.2224333333333 2 474.25154745893 946.488541984099
## 6 41 45.5598 2 371.731536419815 741.448519905869
## X.5 X.6 X.7 X.8 X.9
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## 1
## 2 Mass error (u) Mass error (ppm) Score Sequence Modifications
## 3 -0.00255665715405939 -2.55269904358308 1 TANDVLTIR
## 4 -0.00219111866147159 -2.31499251990099 1 VTDGVMVAR
## 5 -0.0020590159006133 -2.17542139186367 1 VTDGVMVAR
## 6 -0.00120309413080122 -1.62262402086192 0.9996 AGLNIVR
## X.10
## 1
## 2 Accession
## 3 sp|P00549|KPYK1_YEAST
## 4 sp|P00549|KPYK1_YEAST
## 5 sp|P00549|KPYK1_YEAST
## 6 sp|P00549|KPYK1_YEAST
## X.11
## 1
## 2 Description
## 3 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 \\ S288c) GN=CDC19 PE=1 SV=2
## 4 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 \\ S288c) GN=CDC19 PE=1 SV=2
## 5 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 \\ S288c) GN=CDC19 PE=1 SV=2
## 6 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 \\ S288c) GN=CDC19 PE=1 SV=2
## X.12 X.13 X.14
## 1
## 2 Use in quantitation Max fold change Highest mean condition
## 3 False 1.23101575731737 A
## 4 False 1.35108253622201 B
## 5 False 1.25419527606242 B
## 6 False 1.04868912680216 A
## X.15 X.16 X.17
## 1
## 2 Lowest mean condition Anova Maximum CV
## 3 C 0.0522715538027003 12.0175133289667
## 4 A 0.0393818452091522 26.8776079679151
## 5 A 0.253277920596793 27.2310093101224
## 6 B 0.993981434364646 27.0631636013386
## Normalized.abundance X.18 X.19
## 1 A
## 2 JD_06232014_sample1-A JD_06232014_sample2_A JD_06232014_sample3_A
## 3 234646642.659118 246323351.490501 306102714.66799
## 4 179120293.733639 104309665.701784 136741892.392964
## 5 2233197.90782367 1134566.5998162 1574437.81004362
## 6 123797188.716029 122761256.64621 116107425.243685
## X.20 X.21 X.22
## 1 B
## 2 JD_06232014_sample4-A JD_06232014_sample1_B JD_06232014_sample2_B
## 3 257629531.217182 235779468.539422 236753257.546934
## 4 105011188.469111 182469696.644175 183285243.781685
## 5 1701362.72342001 2336796.51015815 1788630.29256942
## 6 63610598.879437 108255803.660911 108785457.069653
## X.23 X.24 X.25
## 1 C
## 2 JD_06232014_sample3_B JD_06232014_sample4_B JD_06232014_sample1_C
## 3 186699807.218591 242959514.796972 223435557.783206
## 4 162853464.030243 180957229.609825 186073547.948691
## 5 1932732.32106691 2274168.76697097 2182403.4051037
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## 6 92469286.5619254 96974519.2450418 115737794.475905
## X.26 X.27 X.28
## 1
## 2 JD_06232014_sample2_C JD_06232014_sample3_C JD_06232014_sample4_C
## 3 220456628.684641 197285091.954229 207473304.500931
## 4 163946644.909844 150247529.397207 176820166.306319
## 5 2040841.8048229 1497501.50492545 2156318.09540588
## 6 100428622.768589 109442962.863466 83998024.0208531
## Raw.abundance X.29 X.30
## 1 A
## 2 JD_06232014_sample1-A JD_06232014_sample2_A JD_06232014_sample3_A
## 3 244531299.931508 221199440.186087 277078923.760572
## 4 186665863.932395 93670533.1411598 123776414.130536
## 5 2327272.96336292 1018845.73758267 1425154.0840074
## 6 129012233.635811 110240142.001841 105098448.610706
## X.31 X.32 X.33
## 1 B
## 2 JD_06232014_sample4-A JD_06232014_sample1_B JD_06232014_sample2_B
## 3 213112377.670857 265826760.55748 265610928.042007
## 4 86865756.2312952 205723291.596601 205625739.64841
## 5 1407375.36397932 2634593.46237989 2006645.04833363
## 6 52618990.9526949 122051719.672593 122045231.85501
## X.34 X.35 X.36
## 1 C
## 2 JD_06232014_sample3_B JD_06232014_sample4_B JD_06232014_sample1_C
## 3 219812880.452275 242959514.796972 210648874.118526
## 4 191737150.420336 180957229.609825 175425002.929311
## 5 2275521.67817463 2274168.76697097 2057509.66730008
## 6 108869636.960823 96974519.2450418 109114396.746851
## X.37 X.38 X.39
## 1
## 2 JD_06232014_sample2_C JD_06232014_sample3_C JD_06232014_sample4_C
## 3 207260386.701525 217212520.118758 194785326.277837
## 4 154133015.755399 165423774.187439 166006773.109084
## 5 1918679.71576989 1648761.5589421 2024448.99975338
## 6 94417098.3431607 120497608.498225 78861145.7987456
## Spectral.counts X.40 X.41
## 1 A
## 2 JD_06232014_sample1-A JD_06232014_sample2_A JD_06232014_sample3_A
## 3 2 1 1
## 4 1 1 1
## 5 1 0 1
## 6 2 2 2
## X.42 X.43 X.44
## 1 B
## 2 JD_06232014_sample4-A JD_06232014_sample1_B JD_06232014_sample2_B
## 3 3 2 3
## 4 1 1 1
## 5 1 0 0
## 6 2 2 2
## X.45 X.46 X.47
## 1 C
## 2 JD_06232014_sample3_B JD_06232014_sample4_B JD_06232014_sample1_C
## 3 2 2 2
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## 4 1 1 1
## 5 0 1 1
## 6 2 2 2
## X.48 X.49 X.50
## 1
## 2 JD_06232014_sample2_C JD_06232014_sample3_C JD_06232014_sample4_C
## 3 3 1 2
## 4 1 1 1
## 5 0 1 0
## 6 2 2 2

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding
Run information. Users have to prepare as csv or txt file like ‘Choi2017_DDA_Progenesis_annotation.csv’,
which includes Run, Condition, and BioReplicate information, and load it in R.
## Read in annotation including condition and biological replicates
annot <- read.csv("dda_progenesis/Choi2017_DDA_Progenesis_annotation.csv", header = TRUE)
annot

## Run Condition BioReplicate
## 1 JD_06232014_sample1-A Condition1 1
## 2 JD_06232014_sample2_A Condition2 2
## 3 JD_06232014_sample4_B Condition4 4
## 4 JD_06232014_sample1_B Condition1 1
## 5 JD_06232014_sample1_C Condition1 1
## 6 JD_06232014_sample2_B Condition2 2
## 7 JD_06232014_sample2_C Condition2 2
## 8 JD_06232014_sample3_A Condition3 3
## 9 JD_06232014_sample3_B Condition3 3
## 10 JD_06232014_sample3_C Condition3 3
## 11 JD_06232014_sample4-A Condition4 4
## 12 JD_06232014_sample4_C Condition4 4

4.4.2 Preprocessing with DDA experiment from progenesis output

The output from Progenesis includes peptide ion-level quantification for each MS runs. ProgenesistoMSstatsFormat
function helps pre-processing for making right format of MSstats input from Progenesis output. Basically,
this function reformats wide format to long format. It provide ‘Raw.abundance’, ‘Normalized.abundance’
and ‘Spectral count’ columns. This converter uses ‘Raw.abundance’ columns for Intensity values. In addition,
there are several steps to filter out or to modify the data in order to get required information.

Here is the summary of pre-processing steps in ProgenesistoMSstatsFormat function.
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Options for ProgenesistoMSstatsFormat

• input : name of Progenesis output, which is wide-format. ‘Accession’, ‘Sequence’, ‘Modification’,
‘Charge’ and one column for each run are required. ‘Accession’ column is used for ProteinName.
‘Raw.abundance’ is used for Intensity.

• annotation :name of ‘annotation.txt’ or ‘annotation.csv’ data which includes Condition, BioReplicate,
and Run information. It will be matched with the column name of input for MS runs.

• useUniquePeptide : TRUE (default) removes peptides that are assigned for more than one proteins.
We assume to use unique peptide for each protein.

• summaryforMultipleRows : max(default), sum, or mean. MSstats assumes that there is only one
measurement (peak intensity) for one feature and one run. When there are multiple measurements for
certain feature and certain run, MSstats need to know which measurements need to be used for further
analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and
one run.

• fewMeasurement : remove or keep the featurew with few measurements.

– ‘remove’ : (default) remove the features that have 1 or 2 measurements across runs.
– ‘keep’ : keep all the features. However, it could generate the error in the step for fitting the

statistical model.

• removeOxidationMpeptides : TRUE will remove the peptides including ‘oxidation (M)’ in modifica-
tion. FALSE is default.

• removeProtein_with1Peptide : TRUE will remove the proteins which have only 1 peptide and
charge. FALSE is default.

For further details, visit the help file using the following code.
## check options for converting format
?ProgenesistoMSstatsFormat

Now, we use ProgenesistoMSstatsFormat function for this example dataset. We chose to remove the
proteins only 1 peptide ion.
quant <- ProgenesistoMSstatsFormat(raw, annotation=annot,

removeProtein_with1Peptide = TRUE)

This function shows the progress. The output of ProgenesistoMSstatsFormat, called quant, is ready for
next step.
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## now 'quant' is ready for MSstats
head(quant)

## ProteinName PeptideSequence PrecursorCharge FragmentIon ProductCharge
## 1 P38998 (ac)AAVTLHLR 2 NA NA
## 2 P38998 (ac)AAVTLHLR 2 NA NA
## 3 P38998 (ac)AAVTLHLR 2 NA NA
## 4 P38998 (ac)AAVTLHLR 2 NA NA
## 5 P38998 (ac)AAVTLHLR 2 NA NA
## 6 P38998 (ac)AAVTLHLR 2 NA NA
## IsotopeLabelType Condition BioReplicate Run Fraction
## 1 L Condition1 1 JD_06232014_sample1-A 1
## 2 L Condition1 1 JD_06232014_sample1_B 1
## 3 L Condition1 1 JD_06232014_sample1_C 1
## 4 L Condition2 2 JD_06232014_sample2_A 1
## 5 L Condition2 2 JD_06232014_sample2_B 1
## 6 L Condition2 2 JD_06232014_sample2_C 1
## Intensity
## 1 NA
## 2 8792900
## 3 10744000
## 4 7647300
## 5 11407000
## 6 10736000

4.4.3 Different options for Progenesis in dataProcess

Progenesis reports 0(zero) for missing values and does not have NA. Therefore,in dataProcess, users need to
use censoredInt='0'. Users can used the same choice for other options.
progenesis.proposed <- dataProcess(quant,

normalization='equalizeMedian',
summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="0", ## !! important
MBimpute=TRUE,
maxQuantileforCensored=0.999)

Further steps is the same as in general workflow (section 4.1).

4.5 Suggested workflow with Proteome Discoverer output for DDA
This section describes steps and considerations to properly format data processed by Proteome Discoverer,
prior to the MSstats analysis. In the following example, another spike-in dataset processed by Proteome
Discoverer is used to demonstrate. The datasets and details for data processing are available in MassIVE.quant,
MSV000084181, Reanalysis : RMSV000000261.4

4.5.1 Load Proteome Discoverer output

The output from Proteome Discoverer includes several level of datasets. PSM sheet should be saved as csv as
below. Here is the expected input for MSstats.
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## Read PSM-level data
raw <- read.csv("dda_PD/ControlMixture_DDA_ProteomeDiscoverer_input.csv")
head(raw)

## Confidence.Level Search.ID Processing.Node.No Sequence Unique.Sequence.ID
## 1 High A 4 AALGVLR 2
## 2 High A 4 NLLLVK 4
## 3 High A 4 LIVVEK 5
## 4 High A 4 LLVDLK 6
## 5 High A 4 IITLLK 9
## 6 High A 4 HEFLR 10
## PSM.Ambiguity
## 1 Unambiguous
## 2 Unambiguous
## 3 Unambiguous
## 4 Unambiguous
## 5 Unambiguous
## 6 Unambiguous
## Protein.Descriptions
## 1 Glycine--tRNA ligase beta subunit OS=Escherichia coli (strain K12) GN=glyS PE=1 SV=4 - [SYGB_ECOLI]
## 2 50S ribosomal protein L3 OS=Escherichia coli (strain K12) GN=rplC PE=1 SV=1 - [RL3_ECOLI]
## 3 50S ribosomal protein L4 OS=Escherichia coli (strain K12) GN=rplD PE=1 SV=1 - [RL4_ECOLI]
## 4 Peptidyl-prolyl cis-trans isomerase D OS=Escherichia coli (strain K12) GN=ppiD PE=1 SV=1 - [PPID_ECOLI]
## 5 3-dehydroquinate synthase OS=Escherichia coli (strain K12) GN=aroB PE=1 SV=1 - [AROB_ECOLI]
## 6 GTP cyclohydrolase 1 OS=Escherichia coli (strain K12) GN=folE PE=1 SV=2 - [GCH1_ECOLI]
## X..Proteins X..Protein.Groups Protein.Group.Accessions Modifications
## 1 1 1 P00961
## 2 1 1 P60438
## 3 1 1 P60723
## 4 1 1 P0ADY1
## 5 1 1 P07639
## 6 1 1 P0A6T5
## Activation.Type DeltaScore DeltaCn Rank Search.Engine.Rank Precursor.Area
## 1 CID 1.0000 0 1 1 3.77e+07
## 2 CID 0.5455 0 1 1 6.59e+08
## 3 CID 0.0000 0 1 1 3.83e+08
## 4 CID 0.4062 0 1 1 1.42e+07
## 5 CID 1.0000 0 1 1 3.93e+07
## 6 CID 1.0000 0 1 1 2.80e+07
## QuanResultID Decoy.Peptides.Matched Exp.Value Homology.Threshold
## 1 NA 11 0.00033 13
## 2 NA 6 0.00940 13
## 3 NA 17 0.20000 13
## 4 NA 4 0.01300 13
## 5 NA NA 0.00860 13
## 6 NA 7 0.27000 13
## Identity.High Identity.Middle IonScore Peptides.Matched X..Missed.Cleavages
## 1 13 13 48 5 0
## 2 13 13 33 11 0
## 3 13 13 20 19 0
## 4 13 13 32 6 0
## 5 13 13 34 5 0
## 6 13 13 19 4 0
## Isolation.Interference.... Ion.Inject.Time..ms. Intensity Charge m.z..Da.
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## 1 53 4 1700000 2 350.2295
## 2 8 2 2520000 2 350.2417
## 3 38 5 739000 2 350.7340
## 4 34 3 1520000 2 350.7342
## 5 13 2 2480000 2 350.7520
## 6 41 70 53500 2 351.1900
## MH...Da. Delta.Mass..Da. Delta.Mass..PPM. RT..min. First.Scan Last.Scan
## 1 699.4517 0 0.68 32.17 8180 8180
## 2 699.4761 0 -0.44 38.77 10907 10907
## 3 700.4607 0 0.41 27.49 6221 6221
## 4 700.4611 0 0.93 43.27 12766 12766
## 5 700.4968 0 -0.03 42.75 12552 12552
## 6 701.3728 0 -0.25 17.39 2693 2693
## MS.Order Ions.Matched Matched.Ions Total.Ions
## 1 MS2 Jun-50 6 50
## 2 MS2 May-52 5 52
## 3 MS2 May-40 5 40
## 4 MS2 May-40 5 40
## 5 MS2 Apr-40 4 40
## 6 MS2 Apr-32 4 32
## Spectrum.File Annotation
## 1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 2 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 3 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 4 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 5 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 6 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run in-
formation. Users have to prepare as csv or txt file like ‘ControlMixture_DDA_ProteomeDiscoverer_annotation.csv’,
which includes Run, Condition, and BioReplicate information, and load it in R.
## Read in annotation including condition and biological replicates
annot <- read.csv("dda_PD/ControlMixture_DDA_ProteomeDiscoverer_annotation.csv", header = TRUE)
annot

## Run Condition BioReplicate
## 1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw Condition1 1
## 2 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2.raw Condition1 1
## 3 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3.raw Condition1 1
## 4 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1.raw Condition2 2
## 5 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2.raw Condition2 2
## 6 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3.raw Condition2 2
## 7 121219_S_CCES_01_07_LysC_Try_1to10_Mixt_3_1.raw Condition3 3
## 8 121219_S_CCES_01_08_LysC_Try_1to10_Mixt_3_2.raw Condition3 3
## 9 121219_S_CCES_01_09_LysC_Try_1to10_Mixt_3_3.raw Condition3 3
## 10 121219_S_CCES_01_10_LysC_Try_1to10_Mixt_4_1.raw Condition4 4
## 11 121219_S_CCES_01_11_LysC_Try_1to10_Mixt_4_2.raw Condition4 4
## 12 121219_S_CCES_01_12_LysC_Try_1to10_Mixt_4_3.raw Condition4 4
## 13 121219_S_CCES_01_13_LysC_Try_1to10_Mixt_5_1.raw Condition5 5
## 14 121219_S_CCES_01_14_LysC_Try_1to10_Mixt_5_2.raw Condition5 5
## 15 121219_S_CCES_01_15_LysC_Try_1to10_Mixt_5_3.raw Condition5 5
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4.5.2 Preprocessing with DDA experiment from Proteome Discoverer output

PDtoMSstatsFormat function helps pre-processing for making right format of MSstats input from Proteome
Discoverer output. Protein.Group.Accessions is used for ProteinName. The combination of Sequence
and Modifications is used for PeptideSequence. Charge is used for PrecursorCharge. Precursor.Area
is used for Intensity. In addition, there are several steps to filter out or to modify the data in order to get
required information.

Here is the summary of pre-processing steps in PDtoMSstatsFormat function.

Options for PDtoMSstatsFormat

• input : name of Proteome discover PSM output, which is long-format. “Protein.Group.Accessions”,
“#Proteins”, “Sequence”, “Modifications”, “Charge”, “Intensity”, “Spectrum.File” are required.

• annotation : name of ‘annotation.txt’ or ‘annotation.csv’ data which includes Condition, BioReplicate,
and Run information. ‘Run’ will be matched with ‘Spectrum.File’.

• useNumProteinsColumn : TRUE removes peptides which have more than 1 in # Proteins column
of PD output.

• useUniquePeptide : TRUE (default) removes peptides that are assigned for more than one proteins.
We assume to use unique peptide for each protein.

• summaryforMultipleRows : max(default), sum, or mean. MSstats assumes that there is only one
measurement (peak intensity) for one feature and one run. When there are multiple measurements for
certain feature and certain run, MSstats need to know which measurements need to be used for further
analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and
one run.

• fewMeasurement : remove or keep the featurew with few measurements.

– ‘remove’ : (default) remove the features that have 1 or 2 measurements across runs.
– ‘keep’ : keep all the features. However, it could generate the error in the step for fitting the

statistical model.

• removeOxidationMpeptides : TRUE will remove the modified peptides including ‘Oxidation (M)’
in ‘Modifications’ column. FALSE is default.

• removeProtein_with1Peptide : TRUE will remove the proteins which have only 1 peptide and
charge. FALSE is default.

• which.quantification : Use ‘Precursor.Area’(default) column for quantified intensities. ‘Intensity’ or
‘Area’ can be used instead.

• which.proteinid : Use ‘Protein.Accessions’(default) column for protein name. ‘Master.Protein.Accessions’
can be used instead.
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• which.sequence : Use ‘Sequence’(default) column for peptide sequence. ‘Annotated.Sequence’ can be
used instead.

For further details, visit the help file using the following code.
## check options for converting format
?PDtoMSstatsFormat

Now, we use PDtoMSstatsFormat function for this example dataset. We chose to remove the proteins with
only 1 peptide ion.
quant <- PDtoMSstatsFormat(raw,

annotation=annot,
which.proteinid = 'Protein.Group.Accessions',
removeProtein_with1Peptide=TRUE)

This function shows the progress. The output of PDtoMSstatsFormat, called quant, is ready for next step.
head(quant)

## ProteinName PeptideSequence PrecursorCharge FragmentIon ProductCharge
## 1 P38998 (ac)AAVTLHLR 2 NA NA
## 2 P38998 (ac)AAVTLHLR 2 NA NA
## 3 P38998 (ac)AAVTLHLR 2 NA NA
## 4 P38998 (ac)AAVTLHLR 2 NA NA
## 5 P38998 (ac)AAVTLHLR 2 NA NA
## 6 P38998 (ac)AAVTLHLR 2 NA NA
## IsotopeLabelType Condition BioReplicate Run Fraction
## 1 L Condition1 1 JD_06232014_sample1-A 1
## 2 L Condition1 1 JD_06232014_sample1_B 1
## 3 L Condition1 1 JD_06232014_sample1_C 1
## 4 L Condition2 2 JD_06232014_sample2_A 1
## 5 L Condition2 2 JD_06232014_sample2_B 1
## 6 L Condition2 2 JD_06232014_sample2_C 1
## Intensity
## 1 NA
## 2 8792900
## 3 10744000
## 4 7647300
## 5 11407000
## 6 10736000

4.5.3 Different options for Proteome Discoverer in dataProcess

Progenesis reports NA for missing values. Therefore,in dataProcess, users need to use censoredInt='NA'.
Users can used the same choice for other options.
pd.proposed <- dataProcess(quant,

normalization='equalizeMedian',
summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="NA", ## !! important
MBimpute=TRUE,
maxQuantileforCensored=0.999)

Further steps is the same as in general workflow (section 4.1).
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4.6 Suggested workflow with OpenMS output for DDA
This section describes steps and considerations to properly format data processed by OpenMS, prior to the
MSstats analysis. In the following example, the raw files for the benchmark dataset (Choi, M. and Eren-Dogu,
Z. F. and Colangelo, C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and Lam, H.
and Neubert, T. A. and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B. and Vitek,
O. 2017) are used. The datasets and details for data processing are available in OpenMS webpage, iPRG
2015 example dataset

4.6.1 Load OpenMS output

Here is the expected input for MSstats, which is output of OpenMS.
## Read PSM-level data
raw <- read.csv("dda_openms/iPRG_lfq_input_MSstats.csv")
head(raw)

## ProteinName PeptideSequence PrecursorCharge FragmentIon
## 1 sp|P09938|RIR2_YEAST AAADALSDLEIK 2 NA
## 2 sp|P09938|RIR2_YEAST AAADALSDLEIK 2 NA
## 3 sp|P09938|RIR2_YEAST AAADALSDLEIK 2 NA
## 4 sp|P09938|RIR2_YEAST AAADALSDLEIK 2 NA
## 5 sp|P09938|RIR2_YEAST AAADALSDLEIK 2 NA
## 6 sp|P09938|RIR2_YEAST AAADALSDLEIK 2 NA
## ProductCharge IsotopeLabelType Condition BioReplicate Run Intensity
## 1 0 L 1 1 1 391797000
## 2 0 L 4 10 10 103656000
## 3 0 L 4 11 11 361107000
## 4 0 L 1 2 2 456756000
## 5 0 L 1 3 3 389268000
## 6 0 L 2 4 4 433488000

If you follow the workflow in OpenMS KNIME, annotation information should be already filled in.

4.6.2 Preprocessing with DDA experiment from OpenMS output

OpenMStoMSstatsFormat function helps pre-processing for making right format of MSstats input from
OpenMS output.

Here is the summary of pre-processing steps in OpenMStoMSstatsFormat function.

Options for OpenMStoMSstatsFormat

• input : name of MSstats input report from OpenMS, which includes feature(peptide ion)-level data.
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• annotation : name of ‘annotation.txt’ data which includes Raw.file, Condition, BioReplicate, and Run
information. If annotation is already complete in OpenMS, use annotation=NULL (default). It will use
the annotation information from input.

• useUniquePeptide : TRUE (default) removes peptides that are assigned for more than one proteins.
We assume to use unique peptide for each protein.

• summaryforMultipleRows : max(default), sum, or mean. MSstats assumes that there is only one
measurement (peak intensity) for one feature and one run. When there are multiple measurements for
certain feature and certain run, MSstats need to know which measurements need to be used for further
analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and
one run.

• fewMeasurement : remove or keep the featurew with few measurements.

– ‘remove’ : (default) remove the features that have 1 or 2 measurements across runs.
– ‘keep’ : keep all the features. However, it could generate the error in the step for fitting the

statistical model.

• removeProtein_with1Feature : TRUE will remove the proteins which have only 1 peptide and
charge. FALSE is default.

For further details, visit the help file using the following code.
## check options for converting format
?OpenMStoMSstatsFormat

Now, we use OpenMStoMSstatsFormat function for this example dataset. We chose to remove the proteins
with shared peptides or only 1 peptide ion.
quant <- OpenMStoMSstatsFormat(raw,

removeProtein_with1Feature = TRUE)

## INFO [2023-02-28 10:23:33] ** Raw data from OpenMS imported successfully.
## INFO [2023-02-28 10:23:34] ** Raw data from OpenMS cleaned successfully.
## INFO [2023-02-28 10:23:34] ** Using annotation extracted from quantification data.
## INFO [2023-02-28 10:23:34] ** Run labels were standardized to remove symbols such as '.' or '%'.
## INFO [2023-02-28 10:23:34] ** The following options are used:
## - Features will be defined by the columns: PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge
## - Shared peptides will be removed.
## - Proteins with a single feature will be removed.
## - Features with less than 3 measurements across runs will be removed.
## INFO [2023-02-28 10:23:34] ** Features with all missing measurements across runs are removed.
## INFO [2023-02-28 10:23:34] ** Shared peptides are removed.
## INFO [2023-02-28 10:23:34] ** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows: max
## INFO [2023-02-28 10:23:34] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:23:34] Proteins with a single feature are removed.
## INFO [2023-02-28 10:23:35] ** Run annotation merged with quantification data.
## INFO [2023-02-28 10:23:35] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:23:35] ** Fractionation handled.
## INFO [2023-02-28 10:23:35] ** Updated quantification data to make balanced design. Missing values are marked by NA
## INFO [2023-02-28 10:23:35] ** Finished preprocessing. The dataset is ready to be processed by the dataProcess function.

This function shows the progress. The output of OpenMStoMSstatsFormat, called quant, is ready for next
step.
## now 'quant' is ready for MSstats
head(quant)

## ProteinName PeptideSequence PrecursorCharge FragmentIon
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## 1 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 2 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 3 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 4 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 5 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 6 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## ProductCharge IsotopeLabelType Condition BioReplicate Run Fraction Intensity
## 1 0 L 1 1 1 1 19165300
## 2 0 L 4 10 10 1 20805400
## 3 0 L 4 11 11 1 NA
## 4 0 L 4 12 12 1 NA
## 5 0 L 1 2 2 1 NA
## 6 0 L 1 3 3 1 NA

4.6.3 Different options for OpenMS in dataProcess

Progenesis reports NA for missing values. Therefore,in dataProcess, users need to use censoredInt='NA'.
Users can used the same choice for other options.
openms.proposed <- dataProcess(quant,

normalization='equalizeMedian',
summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="NA",
MBimpute=TRUE,
maxQuantileforCensored=0.999)

Further steps is the same as in general workflow (section 4.1).

5. DIA analysis with MSstats
5.1 Suggested workflow with Skyline output for DIA
The analysis for DIA with Skyline output is the same as the workflow with Skyline output for DDA. Please
check section 4.2 and options form SkylinetoMSstatsFormat.

5.2 Suggested workflow with Spectronaut output for DIA
This section describes steps and considerations to properly format data processed by Spectronaut for
SWATH/DIA experiments, prior to the MSstats analysis. In the following example, the raw files for the
benchmark dataset (Bruderer et al. 2015) are quantified by Spectronaut. The datasets and details for data
processing are available in MassIVE.quant, MSV000081828, Reanalysis : RMSV000000252.2

5.2.1 Load Spectronaut output

We first load and access the dataset processed by Spectronaut.
# Read output from Spectronaut
raw <- read.csv("dia_spectronaut/Bruderer2015_DIA_Spectronaut_input.xls", sep="\t")

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run
information. Users have to prepare as csv or txt file like ‘Bruderer2015_DIA_Spectronaut_annotation.csv’,
which includes Run, Condition, and BioReplicate information, and load it in R.
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## Read in annotation including condition and biological replicates
annot <- read.csv("dia_spectronaut/Bruderer2015_DIA_Spectronaut_annotation.csv", header = TRUE)
annot

## Run Condition BioReplicate
## 1 B_D140314_SGSDSsample1_R01_MHRM S1 S1
## 2 B_D140314_SGSDSsample1_R02_MHRM S1 S1
## 3 B_D140314_SGSDSsample1_R03_MHRM S1 S1
## 4 B_D140314_SGSDSsample2_R01_MHRM S2 S2
## 5 B_D140314_SGSDSsample2_R02_MHRM S2 S2
## 6 B_D140314_SGSDSsample2_R03_MHRM S2 S2
## 7 B_D140314_SGSDSsample3_R01_MHRM S3 S3
## 8 B_D140314_SGSDSsample3_R02_MHRM S3 S3
## 9 B_D140314_SGSDSsample3_R03_MHRM S3 S3
## 10 B_D140314_SGSDSsample4_R01_MHRM S4 S4
## 11 B_D140314_SGSDSsample4_R02_MHRM S4 S4
## 12 B_D140314_SGSDSsample4_R03_MHRM S4 S4
## 13 B_D140314_SGSDSsample5_R01_MHRM S5 S5
## 14 B_D140314_SGSDSsample5_R02_MHRM S5 S5
## 15 B_D140314_SGSDSsample5_R03_MHRM S5 S5
## 16 B_D140314_SGSDSsample6_R01_MHRM S6 S6
## 17 B_D140314_SGSDSsample6_R02_MHRM S6 S6
## 18 B_D140314_SGSDSsample6_R03_MHRM S6 S6
## 19 B_D140314_SGSDSsample7_R01_MHRM S7 S7
## 20 B_D140314_SGSDSsample7_R02_MHRM S7 S7
## 21 B_D140314_SGSDSsample7_R03_MHRM S7 S7
## 22 B_D140314_SGSDSsample8_R01_MHRM S8 S8
## 23 B_D140314_SGSDSsample8_R02_MHRM S8 S8
## 24 B_D140314_SGSDSsample8_R03_MHRM S8 S8

5.2.2 Preprocessing with DIA experiment from Spectronaut output

The output from Spectronaut should look like below.
head(raw)

## R.Condition R.FileName R.Replicate PG.ProteinAccessions
## 1 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2
## 2 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2
## 3 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2
## 4 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2
## 5 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2
## 6 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2
## PG.ProteinGroups PG.Qvalue PG.Quantity PEP.GroupingKey PEP.StrippedSequence
## 1 A0A0B4J2A2 0 4662586 IIPGFMCQGGDFTR IIPGFMCQGGDFTR
## 2 A0A0B4J2A2 0 4662586 IIPGFMCQGGDFTR IIPGFMCQGGDFTR
## 3 A0A0B4J2A2 0 4662586 IIPGFMCQGGDFTR IIPGFMCQGGDFTR
## 4 A0A0B4J2A2 0 4662586 IIPGFMCQGGDFTR IIPGFMCQGGDFTR
## 5 A0A0B4J2A2 0 4662586 IIPGFMCQGGDFTR IIPGFMCQGGDFTR
## 6 A0A0B4J2A2 0 4662586 IIPGFMCQGGDFTR IIPGFMCQGGDFTR
## PEP.Quantity EG.iRTPredicted EG.Library
## 1 3303864 59.83870 S072_GSDS_DpD_Pulsar_Full.xls
## 2 3303864 59.83870 S072_GSDS_DpD_Pulsar_Full.xls
## 3 3303864 59.83870 S072_GSDS_DpD_Pulsar_Full.xls
## 4 3303864 59.83870 S072_GSDS_DpD_Pulsar_Full.xls
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## 5 3303864 59.83870 S072_GSDS_DpD_Pulsar_Full.xls
## 6 3303864 45.20149 S072_GSDS_DpD_Pulsar_Full.xls
## EG.ModifiedSequence EG.PrecursorId
## 1 _IIPGFMC[+C2+H3+N+O]QGGDFTR_ _IIPGFMC[+C2+H3+N+O]QGGDFTR_.2
## 2 _IIPGFMC[+C2+H3+N+O]QGGDFTR_ _IIPGFMC[+C2+H3+N+O]QGGDFTR_.2
## 3 _IIPGFMC[+C2+H3+N+O]QGGDFTR_ _IIPGFMC[+C2+H3+N+O]QGGDFTR_.2
## 4 _IIPGFMC[+C2+H3+N+O]QGGDFTR_ _IIPGFMC[+C2+H3+N+O]QGGDFTR_.2
## 5 _IIPGFMC[+C2+H3+N+O]QGGDFTR_ _IIPGFMC[+C2+H3+N+O]QGGDFTR_.2
## 6 _IIPGFM[+O]C[+C2+H3+N+O]QGGDFTR_ _IIPGFM[+O]C[+C2+H3+N+O]QGGDFTR_.2
## EG.Qvalue FG.Charge
## 1 3.355320e-12 2
## 2 3.355320e-12 2
## 3 3.355320e-12 2
## 4 3.355320e-12 2
## 5 3.355320e-12 2
## 6 4.455933e-14 2
## FG.Id
## 1 _IIPGFMC[+C2+H3+N+O]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.xls.True.799.8763
## 2 _IIPGFMC[+C2+H3+N+O]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.xls.True.799.8763
## 3 _IIPGFMC[+C2+H3+N+O]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.xls.True.799.8763
## 4 _IIPGFMC[+C2+H3+N+O]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.xls.True.799.8763
## 5 _IIPGFMC[+C2+H3+N+O]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.xls.True.799.8763
## 6 _IIPGFM[+O]C[+C2+H3+N+O]QGGDFTR_;A0A0B4J2A2.2;45.20149F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.xls.True.807.8738
## FG.PrecMz FG.Quantity F.Charge F.FrgIon F.FrgLossType F.FrgMz F.FrgNum
## 1 799.8763 3027798.8 2 y12 noloss 686.7923 12
## 2 799.8763 3027798.8 1 y8 noloss 940.3942 8
## 3 799.8763 3027798.8 1 y6 noloss 652.3049 6
## 4 799.8763 3027798.8 1 y3 noloss 423.2350 3
## 5 799.8763 3027798.8 1 y7 noloss 780.3635 7
## 6 807.8738 257682.8 2 y12 noloss 694.7897 12
## F.FrgType F.ExcludedFromQuantification F.NormalizedPeakArea
## 1 y False 1880069.5
## 2 y False 382481.4
## 3 y False 331427.1
## 4 y False 244019.3
## 5 y False 189801.4
## 6 y False 197765.4
## F.NormalizedPeakHeight F.PeakArea F.PeakHeight
## 1 6854814.4 1687479.6 6152623.5
## 2 1320585.1 343300.9 1185307.5
## 3 1221639.0 297476.5 1096497.2
## 4 891761.8 219022.5 800411.9
## 5 673177.2 170358.6 604218.5
## 6 431701.5 174551.3 381027.4

The input data for MSstats is required to contain variables of ProteinName, PeptideSequence,
PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run,
Intensity. These variable names should be fixed. Therefore, we need to get subset of useful columns and
to rename them. Also several filtering steps are required. SpectronauttoMSstatsFormat function helps
pre-processing for making right format of MSstats input from Spectronaut output. First, it uses only noloss
from F.FrgLossType. If not, multiple measurements for each feature and run can be happend. Spectronaut
provides the column named F.ExcludedFromQuantification based on XIC quality such as interference
between chromatographies. Only features with F.ExcludedFromQuantification == 'False' should be
used. PG.ProteinGroups is used for ProteinName. EG.ModifiedSequence is used for PeptideSequence.
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FG.Charge is used for PrecursorCharge. F.FrgIon is used for FragmentIon. F.Charge is used for
ProductCharge. F.PeakArea with default option is used for Intensity. Then several filtering steps will be
performed.

Here is the summary of pre-processing steps for SWATH/DIA experiment in SpectronauttoMSstatsFormat
function.

## check options for converting format
?SpectronauttoMSstatsFormat

quant <- SpectronauttoMSstatsFormat(raw,
annotation = annot,
filter_with_Qvalue = TRUE, ## same as default
qvalue_cutoff = 0.01, ## same as default
removeProtein_with1Feature = TRUE)

This function shows the progress. The output of SpectronauttoMSstatsFormat, called quant, is ready for
next step.
## now 'quant' is ready for MSstats
head(quant)

## ProteinName PeptideSequence PrecursorCharge FragmentIon
## 1 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 2 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 3 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 4 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 5 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 6 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## ProductCharge IsotopeLabelType Condition BioReplicate Run Fraction Intensity
## 1 0 L 1 1 1 1 19165300
## 2 0 L 4 10 10 1 20805400
## 3 0 L 4 11 11 1 NA
## 4 0 L 4 12 12 1 NA
## 5 0 L 1 2 2 1 NA
## 6 0 L 1 3 3 1 NA

5.2.3 Different options for Spectronaut output of DIA experiment in dataProcess

In dataProcess, users need to use censoredInt='0' for Spectronaut output. Spectronaut ouput generates
very few number of NA. After applying Qvalue, zero intensities will be generated and those should be imputed.
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spectronaut.proposed <- dataProcess(quant,
normalization='equalizeMedian',
summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="0",
MBimpute=TRUE,
maxQuantileforCensored=0.999)

Further steps is the same as in general workflow (section 4.1).

5.3 Suggested workflow with DIA-Umpire output for DIA
This section describes steps and considerations to properly format data processed by DIA-Umpire for
SWATH/DIA experiments, prior to the MSstats analysis. In the following example, the raw files for the
benchmark dataset (Bruderer et al. 2015) are quantified by DIA-Umpire. The datasets and details for data
processing are available in MassIVE.quant, MSV000081828, Reanalysis : RMSV000000252.3

5.3.1 Load DIA-Umpire output

We first load and access the dataset processed by DIA-Umpire.
# Read output from DIA_Umpire : three output from different levels.
raw.frag <- read.csv('dia_diaumpire/Bruderer2015_DIA_DIAumpire_input_FragSummary.xls', sep="\t")

raw.pep <- read.csv('dia_diaumpire/Bruderer2015_DIA_DIAumpire_input_PeptideSummary.xls', sep="\t")

raw.pro <- read.csv('dia_diaumpire/Bruderer2015_DIA_DIAumpire_input_ProtSummary.xls', sep="\t")

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run
information. Users have to prepare as csv or txt file like ‘Bruderer2015_DIA_DIAumpire_annotation.csv’,
which includes Run, Condition, and BioReplicate information, and load it in R.
## Read in annotation including condition and biological replicates
annot <- read.csv("dia_diaumpire/Bruderer2015_DIA_DIAumpire_annotation.csv", header = TRUE)
annot

## Condition BioReplicate Run
## 1 SGSDSsample1 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM_T0
## 2 SGSDSsample1 SGSDSsample1 B_D140314_SGSDSsample1_R02_MHRM_T0
## 3 SGSDSsample1 SGSDSsample1 B_D140314_SGSDSsample1_R03_MHRM_T0
## 4 SGSDSsample2 SGSDSsample2 B_D140314_SGSDSsample2_R01_MHRM_T0
## 5 SGSDSsample2 SGSDSsample2 B_D140314_SGSDSsample2_R02_MHRM_T0
## 6 SGSDSsample2 SGSDSsample2 B_D140314_SGSDSsample2_R03_MHRM_T0
## 7 SGSDSsample3 SGSDSsample3 B_D140314_SGSDSsample3_R01_MHRM_T0
## 8 SGSDSsample3 SGSDSsample3 B_D140314_SGSDSsample3_R02_MHRM_T0
## 9 SGSDSsample3 SGSDSsample3 B_D140314_SGSDSsample3_R03_MHRM_T0
## 10 SGSDSsample4 SGSDSsample4 B_D140314_SGSDSsample4_R01_MHRM_T0
## 11 SGSDSsample4 SGSDSsample4 B_D140314_SGSDSsample4_R02_MHRM_T0
## 12 SGSDSsample4 SGSDSsample4 B_D140314_SGSDSsample4_R03_MHRM_T0
## 13 SGSDSsample5 SGSDSsample5 B_D140314_SGSDSsample5_R01_MHRM_T0
## 14 SGSDSsample5 SGSDSsample5 B_D140314_SGSDSsample5_R02_MHRM_T0
## 15 SGSDSsample5 SGSDSsample5 B_D140314_SGSDSsample5_R03_MHRM_T0
## 16 SGSDSsample6 SGSDSsample6 B_D140314_SGSDSsample6_R01_MHRM_T0
## 17 SGSDSsample6 SGSDSsample6 B_D140314_SGSDSsample6_R02_MHRM_T0
## 18 SGSDSsample6 SGSDSsample6 B_D140314_SGSDSsample6_R03_MHRM_T0
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## 19 SGSDSsample7 SGSDSsample7 B_D140314_SGSDSsample7_R01_MHRM_T0
## 20 SGSDSsample7 SGSDSsample7 B_D140314_SGSDSsample7_R02_MHRM_T0
## 21 SGSDSsample7 SGSDSsample7 B_D140314_SGSDSsample7_R03_MHRM_T0
## 22 SGSDSsample8 SGSDSsample8 B_D140314_SGSDSsample8_R01_MHRM_T0
## 23 SGSDSsample8 SGSDSsample8 B_D140314_SGSDSsample8_R02_MHRM_T0
## 24 SGSDSsample8 SGSDSsample8 B_D140314_SGSDSsample8_R03_MHRM_T0

5.3.2 Preprocessing with DIA experiment from DIA-Umpire output

Here is the summary of pre-processing steps for DIA experiment in DIAUmpiretoMSstatsFormat function.

Options for DIAUmpiretoMSstatsFormat

• raw.frag : name of FragSummary_date.xls data, which includes feature-level data.

• raw.pep : name of PeptideSummary_date.xls data, which includes selected fragments information.

• raw.pro : name of ProteinSummary_date.xls data, which includes selected peptides information.

• annotation : name of ‘annotation.txt’ data which includes Raw.file, Condition, BioReplicate, and Run
information.

• useSelectedFrag : TRUE (default) will use the selected fragment for each peptide. ‘Selected_fragments’
column is required.

• useSelectedPep : TRUE (default) will use the selected peptide for each protein. ‘Selected_peptides’
column is required.

• summaryforMultipleRows : max(default), sum, or mean. MSstats assumes that there is only one
measurement (peak intensity) for one feature and one run. When there are multiple measurements for
certain feature and certain run, MSstats need to know which measurements need to be used for further
analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and
one run.

• fewMeasurement : remove or keep the featurew with few measurements.

– ‘remove’ : (default) remove the features that have 1 or 2 measurements across runs.
– ‘keep’ : keep all the features. However, it could generate the error in the step for fitting the

statistical model.

• removeProtein_with1Feature : TRUE will remove the proteins which have only 1 feature, which is
the combination of peptide, precursor charge, fragment and charge. FALSE is default.

For further details, visit the help file using the following code.
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## check options for converting format
?DIAUmpiretoMSstatsFormat

quant <- DIAUmpiretoMSstatsFormat(raw.frag, raw.pep, raw.pro,
annot,
useSelectedFrag = TRUE,
useSelectedPep = FALSE,
removeProtein_with1Feature = TRUE)

This function shows the progress. The output of DIAUmpiretoMSstatsFormat, called quant, is ready for
next step.
## now 'quant' is ready for MSstats
head(quant)

## ProteinName PeptideSequence PrecursorCharge FragmentIon
## 1 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 2 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 3 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 4 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 5 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## 6 sp|P09938|RIR2_YEAST AAADALSDLEIKDSK 2 <NA>
## ProductCharge IsotopeLabelType Condition BioReplicate Run Fraction Intensity
## 1 0 L 1 1 1 1 19165300
## 2 0 L 4 10 10 1 20805400
## 3 0 L 4 11 11 1 NA
## 4 0 L 4 12 12 1 NA
## 5 0 L 1 2 2 1 NA
## 6 0 L 1 3 3 1 NA

5.3.3 Different options for DIA-Umpire output of DIA experiment in dataProcess

In dataProcess, users need to use censoredInt='NA' for DIA-Umpire output.
diaumpire.proposed <- dataProcess(quant,

normalization='equalizeMedian',
summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="NA", ## !! important
MBimpute=TRUE,
maxQuantileforCensored=0.999)

Further steps is the same as in general workflow (section 4.1).

5.4 Suggested workflow with OpenSWATH output for SWATH
This section describes steps and considerations to properly format data processed by OpenSWATH for
SWATH experiments, prior to the MSstats analysis. In the following example, the dataset processed and
quantified by OpenSWATH and available as supplementary in (Röst et al. 2014) is used. The datasets and
details for data processing are available in MassIVE.quant, MSV000081829, Reanalysis : RMSV000000253.2

5.4.1 Load OpenSWATH output
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## Read fragment-level data
raw <- read.csv("dia_openswath/Rost2014_DIA_OpenSWATH_input.txt", sep="\t")
head(raw)

## transition_group_record
## 1 AQUA4SWATH_YeastB_GSMADVPK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML 0 0
## 2 AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML 0 0
## 3 AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_run0_split_napedro_L120417_001_SW_combined.featureXML 0 0
## 4 AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML 0 0
## 5 AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML 0 0
## 6 AQUA4SWATH_HMLangeB_ITVDDSDQGANAK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML 0 0
## decoy main_var_xx_swath_prelim_score var_bseries_score
## 1 FALSE 1.2878970 1
## 2 FALSE 0.1706103 5
## 3 FALSE 1.1339196 2
## 4 FALSE 1.7598289 2
## 5 FALSE -0.4115174 2
## 6 FALSE 1.0441584 1
## var_elution_model_fit_score var_intensity_score var_isotope_correlation_score
## 1 0.9342550 0.453363758 0.9621812
## 2 0.8913419 0.049083725 0.6132449
## 3 0.9999998 0.009851618 0.3554128
## 4 0.9159949 0.095405653 0.9065832
## 5 0.9574775 0.021453197 0.9215580
## 6 0.9746000 0.022167918 0.4878706
## var_isotope_overlap_score var_library_corr var_library_rmsd var_log_sn_score
## 1 0.00000000 -0.1055161 0.27253090 2.6731795
## 2 0.06965649 -0.5652690 0.30030363 0.4186867
## 3 0.22701794 -0.6904735 0.07683261 0.7115797
## 4 0.10497624 0.9654186 0.21724993 2.2435553
## 5 0.02678354 -0.2470041 0.30010703 0.3742150
## 6 0.84251969 0.8373865 0.08390017 1.5353173
## var_massdev_score var_massdev_score_weighted var_norm_rt_score
## 1 10.605493 8.722201 0.037829778
## 2 3.506636 1.525251 0.053104479
## 3 1.922673 1.770099 0.059778618
## 4 6.326571 7.671188 0.037207495
## 5 10.654442 13.899227 0.027236154
## 6 5.657834 3.023133 0.007901597
## var_xcorr_coelution var_xcorr_coelution_weighted var_xcorr_shape
## 1 3.3763883 1.9254634 0.8278485
## 2 2.9055453 0.9019211 0.7211294
## 3 0.9163978 0.4743998 0.8000000
## 4 2.6757296 1.1959883 0.8199334
## 5 1.8944289 0.7742008 0.8040568
## 6 1.8595018 0.2477762 0.8121000
## var_xcorr_shape_weighted var_yseries_score
## 1 0.7850388 2
## 2 0.7406344 3
## 3 0.7628001 3
## 4 0.7884498 2
## 5 0.8094922 0
## 6 0.8723227 0
## transition_group_id
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## 1 AQUA4SWATH_YeastB_GSMADVPK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML
## 2 AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML
## 3 AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_run0_split_napedro_L120417_001_SW_combined.featureXML
## 4 AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML
## 5 AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML
## 6 AQUA4SWATH_HMLangeB_ITVDDSDQGANAK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.featureXML
## run_id filename RT
## 1 0 split_napedro_L120417_001_SW_combined.featureXML 1024.232
## 2 0 split_napedro_L120417_001_SW_combined.featureXML 2525.123
## 3 0 split_napedro_L120417_001_SW_combined.featureXML 4923.724
## 4 0 split_napedro_L120417_001_SW_combined.featureXML 2396.661
## 5 0 split_napedro_L120417_001_SW_combined.featureXML 4217.872
## 6 0 split_napedro_L120417_001_SW_combined.featureXML 1058.414
## id Sequence FullPeptideName Charge m.z
## 1 f_1353009549277083696 GSMADVPK GSMADVPK(UniMod:259) 2 406.707
## 2 f_17169785622655779335 APIPTALDTDSSK APIPTALDTDSSK(UniMod:259) 2 662.348
## 3 f_14843615568932246264 DITAFDETLFR DITAFDETLFR(UniMod:267) 2 669.334
## 4 f_2705275134670444755 LNTIYQNDLTK LNTIYQNDLTK(UniMod:259) 2 665.858
## 5 f_9381457823485960609 GDSSLLLAVTEVK GDSSLLLAVTEVK(UniMod:259) 2 670.382
## 6 f_4286219334306522917 ITVDDSDQGANAK ITVDDSDQGANAK(UniMod:259) 2 671.322
## Intensity ProteinName assay_rt delta_rt leftWidth norm_RT
## 1 228484 AQUA4SWATH_YeastB 1160.081 -135.84854 1003.92 -19.18298
## 2 11528 AQUA4SWATH_HMLangeA 2343.868 181.25584 2513.89 24.41045
## 3 1784 AQUA4SWATH_HMLangeA 4711.441 212.28267 4920.69 94.07786
## 4 41457 AQUA4SWATH_HMLangeA 2525.725 -129.06375 2384.16 20.67925
## 5 4107 AQUA4SWATH_HMLangeB 4306.552 -88.67945 4214.01 73.57638
## 6 762 AQUA4SWATH_HMLangeB 1091.456 -33.04119 1045.90 -18.19016
## nr_peaks peak_apices_sum rightWidth rt_score sn_ratio total_xic
## 1 4 23302 1061.95 3.7829778 14.485954 503975
## 2 4 1673 2537.79 5.3104479 1.519964 234864
## 3 4 902 4924.10 5.9778618 2.037207 181087
## 4 4 8532 2411.47 3.7207495 9.426787 434534
## 5 4 1065 4227.67 2.7236154 1.453850 191440
## 6 4 291 1062.97 0.7901597 4.642799 34374
## dotprod_score library_dotprod library_manhattan manhatt_score
## 1 0.7223189 0.7550611 0.6275367 0.7230707
## 2 0.6545768 0.7396598 0.6218496 0.8495160
## 3 0.7349210 0.9816014 0.1471980 0.7705343
## 4 0.7527736 0.8719077 0.5787663 0.7852044
## 5 0.6493268 0.7414075 0.6934909 0.8909054
## 6 0.4477453 0.9752496 0.2175255 1.0719205
## xx_lda_prelim_score xx_swath_prelim_score
## 1 3.488009 0
## 2 1.007469 0
## 3 2.232398 0
## 4 3.770504 0
## 5 1.713495 0
## 6 3.736117 0
## aggr_Peak_Area aggr_Peak_Apex
## 1 153339.000000;67621.000000;5210.000000;2314.000000 NA;NA;NA;NA
## 2 803.000000;6614.000000;2073.000000;2038.000000 NA;NA;NA;NA
## 3 520.000000;403.000000;405.000000;456.000000 NA;NA;NA;NA
## 4 1849.000000;37105.000000;410.000000;2093.000000 NA;NA;NA;NA
## 5 904.000000;110.000000;3073.000000;20.000000 NA;NA;NA;NA
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## 6 120.000000;180.000000;140.000000;322.000000 NA;NA;NA;NA
## aggr_Fragment_Annotation
## 1 AQUA4SWATH_YeastB_GSMADVPK(UniMod:259)/2_y4;AQUA4SWATH_YeastB_GSMADVPK(UniMod:259)/2_y5;AQUA4SWATH_YeastB_GSMADVPK(UniMod:259)/2_b6;AQUA4SWATH_YeastB_GSMADVPK(UniMod:259)/2_y6
## 2 AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_y10;AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_y5;AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_y8;AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_y9
## 3 AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_y6;AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_y7;AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_y8;AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_y9
## 4 AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_y8;AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_y7;AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_y9;AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_y6
## 5 AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)/2_y7;AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)/2_y8;AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)/2_y6;AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)/2_y9
## 6 AQUA4SWATH_HMLangeB_ITVDDSDQGANAK(UniMod:259)/2_y9;AQUA4SWATH_HMLangeB_ITVDDSDQGANAK(UniMod:259)/2_y11;AQUA4SWATH_HMLangeB_ITVDDSDQGANAK(UniMod:259)/2_y8;AQUA4SWATH_HMLangeB_ITVDDSDQGANAK(UniMod:259)/2_y10
## log10_total_xic LD1 peak_group_rank d_score m_score
## 1 5.702409 -1.9493868 1 -0.6243745 0.4629052
## 2 5.370816 -2.4461163 1 -1.1333458 0.5062006
## 3 5.257887 -1.0880511 1 0.2581884 0.3345616
## 4 5.638024 -0.9814508 1 0.3674158 0.3138670
## 5 5.282033 -2.4287808 1 -1.1155831 0.5038482
## 6 4.536230 -1.7118092 1 -0.3809420 0.4358001

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding
Run information. Users have to prepare as csv or txt file like ‘Rost2014_DIA_OpenSWATH_annotation.csv’,
which includes Run, Condition, and BioReplicate information, and load it in R.
## Read in annotation including condition and biological replicates: ControlMixture_DDA_ProteomeDiscoverer_annotation.csv
annot <- read.csv("dia_openswath/Rost2014_DIA_OpenSWATH_annotation.csv", header = TRUE)
annot

## Filename Condition BioReplicate
## 1 split_napedro_L120417_001_SW_combined.featureXML 512 512
## 2 split_napedro_L120417_002_SW_combined.featureXML 256 256
## 3 split_napedro_L120417_003_SW_combined.featureXML 128 128
## 4 split_napedro_L120417_004_SW_combined.featureXML 64 64
## 5 split_napedro_L120417_005_SW_combined.featureXML 32 32
## 6 split_napedro_L120417_006_SW_combined.featureXML 16 16
## 7 split_napedro_L120417_007_SW_combined.featureXML 8 8
## 8 split_napedro_L120417_008_SW_combined.featureXML 4 4
## 9 split_napedro_L120417_009_SW_combined.featureXML 2 2
## 10 split_napedro_L120417_010_SW_combined.featureXML 1 1
## 11 split_napedro_L120419_001_SW_combined.featureXML 512 512
## 12 split_napedro_L120419_002_SW_combined.featureXML 256 256
## 13 split_napedro_L120419_003_SW_combined.featureXML 128 128
## 14 split_napedro_L120419_004_SW_combined.featureXML 64 64
## 15 split_napedro_L120419_005_SW_combined.featureXML 32 32
## 16 split_napedro_L120419_006_SW_combined.featureXML 16 16
## 17 split_napedro_L120419_007_SW_combined.featureXML 8 8
## 18 split_napedro_L120419_008_SW_combined.featureXML 4 4
## 19 split_napedro_L120419_009_SW_combined.featureXML 2 2
## 20 split_napedro_L120419_010_SW_combined.featureXML 1 1
## 21 split_napedro_L120420_001_SW_combined.featureXML 512 512
## 22 split_napedro_L120420_002_SW_combined.featureXML 256 256
## 23 split_napedro_L120420_003_SW_combined.featureXML 128 128
## 24 split_napedro_L120420_004_SW_combined.featureXML 64 64
## 25 split_napedro_L120420_005_SW_combined.featureXML 32 32
## 26 split_napedro_L120420_006_SW_combined.featureXML 16 16
## 27 split_napedro_L120420_007_SW_combined.featureXML 8 8
## 28 split_napedro_L120420_008_SW_combined.featureXML 4 4
## 29 split_napedro_L120420_009_SW_combined.featureXML 2 2
## 30 split_napedro_L120420_010_SW_combined.featureXML 1 1
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## Run
## 1 split_napedro_L120417_001_SW_combined.featureXML
## 2 split_napedro_L120417_002_SW_combined.featureXML
## 3 split_napedro_L120417_003_SW_combined.featureXML
## 4 split_napedro_L120417_004_SW_combined.featureXML
## 5 split_napedro_L120417_005_SW_combined.featureXML
## 6 split_napedro_L120417_006_SW_combined.featureXML
## 7 split_napedro_L120417_007_SW_combined.featureXML
## 8 split_napedro_L120417_008_SW_combined.featureXML
## 9 split_napedro_L120417_009_SW_combined.featureXML
## 10 split_napedro_L120417_010_SW_combined.featureXML
## 11 split_napedro_L120419_001_SW_combined.featureXML
## 12 split_napedro_L120419_002_SW_combined.featureXML
## 13 split_napedro_L120419_003_SW_combined.featureXML
## 14 split_napedro_L120419_004_SW_combined.featureXML
## 15 split_napedro_L120419_005_SW_combined.featureXML
## 16 split_napedro_L120419_006_SW_combined.featureXML
## 17 split_napedro_L120419_007_SW_combined.featureXML
## 18 split_napedro_L120419_008_SW_combined.featureXML
## 19 split_napedro_L120419_009_SW_combined.featureXML
## 20 split_napedro_L120419_010_SW_combined.featureXML
## 21 split_napedro_L120420_001_SW_combined.featureXML
## 22 split_napedro_L120420_002_SW_combined.featureXML
## 23 split_napedro_L120420_003_SW_combined.featureXML
## 24 split_napedro_L120420_004_SW_combined.featureXML
## 25 split_napedro_L120420_005_SW_combined.featureXML
## 26 split_napedro_L120420_006_SW_combined.featureXML
## 27 split_napedro_L120420_007_SW_combined.featureXML
## 28 split_napedro_L120420_008_SW_combined.featureXML
## 29 split_napedro_L120420_009_SW_combined.featureXML
## 30 split_napedro_L120420_010_SW_combined.featureXML

5.4.2 Preprocessing with DIA experiment from OpenSWATH output

The output from OpenSWATH should look like below.
head(raw)

Here is the summary of pre-processing steps for SWATH/DIA experiment in OpenSWATHtoMSstatsFormat
function.
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Options for OpenSWATHtoMSstatsFormat

• input : name of MSstats input report from OpenSWATH, which includes feature-level data.

• annotation :name of ‘annotation.txt’ data which includes Raw.file, Condition, BioReplicate, and Run
information. Run should be the same as ‘filename’.

• filter_with_mscore : TRUE (default) will filter out the features that have greater than
mscore_cutoff in m_score column. Those features will be removed.

• mscore_cutoff : Cutoff for m_score. default is 0.01.

• useUniquePeptide : TRUE (default) removes peptides that are assigned for more than one proteins.
We assume to use unique peptide for each protein.

• summaryforMultipleRows : max(default), sum, or mean. MSstats assumes that there is only one
measurement (peak intensity) for one feature and one run. When there are multiple measurements for
certain feature and certain run, MSstats need to know which measurements need to be used for further
analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and
one run.

• fewMeasurement : remove or keep the featurew with few measurements.

– ‘remove’ : (default) remove the features that have 1 or 2 measurements across runs.
– ‘keep’ : keep all the features. However, it could generate the error in the step for fitting the

statistical model.

• removeProtein_with1Feature : TRUE will remove the proteins which have only 1 peptide and
charge. FALSE is default.

For further details, visit the help file using the following code.
## check options for converting format
?OpenSWATHtoMSstatsFormat

Now, we use OpenSWATHtoMSstatsFormat function for this example dataset. We chose to remove the proteins
with only 1 feature.
quant <- OpenSWATHtoMSstatsFormat(raw,

annotation = annot,
filter_with_mscore = TRUE, ## same as default
mscore_cutoff = 0.01, ## same as default
removeProtein_with1Feature = TRUE)

## INFO [2023-02-28 10:31:22] ** Raw data from OpenSWATH imported successfully.
## INFO [2023-02-28 10:31:22] ** Raw data from OpenSWATH cleaned successfully.
## INFO [2023-02-28 10:31:22] ** Using provided annotation.
## INFO [2023-02-28 10:31:22] ** Run labels were standardized to remove symbols such as '.' or '%'.
## INFO [2023-02-28 10:31:22] ** The following options are used:
## - Features will be defined by the columns: PeptideSequence, PrecursorCharge, FragmentIon
## - Shared peptides will be removed.
## - Proteins with a single feature will be removed.
## - Features with less than 3 measurements across runs will be removed.
## INFO [2023-02-28 10:31:22] ** Rows with values of decoy equal to 1 are removed
## INFO [2023-02-28 10:31:22] ** Rows with values not smaller than 0.01 in m_score are removed
## INFO [2023-02-28 10:31:22] ** Features with all missing measurements across runs are removed.
## INFO [2023-02-28 10:31:22] ** Shared peptides are removed.

## Warning in aggregator(Intensity, na.rm = TRUE): no non-missing arguments to
## max; returning -Inf
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## Warning in aggregator(Intensity, na.rm = TRUE): no non-missing arguments to
## max; returning -Inf

## Warning in aggregator(Intensity, na.rm = TRUE): no non-missing arguments to
## max; returning -Inf

## Warning in aggregator(Intensity, na.rm = TRUE): no non-missing arguments to
## max; returning -Inf

## Warning in aggregator(Intensity, na.rm = TRUE): no non-missing arguments to
## max; returning -Inf

## Warning in aggregator(Intensity, na.rm = TRUE): no non-missing arguments to
## max; returning -Inf

## Warning in aggregator(Intensity, na.rm = TRUE): no non-missing arguments to
## max; returning -Inf

## Warning in aggregator(Intensity, na.rm = TRUE): no non-missing arguments to
## max; returning -Inf

## INFO [2023-02-28 10:31:22] ** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows: max
## INFO [2023-02-28 10:31:22] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:31:22] Proteins with a single feature are removed.
## INFO [2023-02-28 10:31:22] ** Run annotation merged with quantification data.
## INFO [2023-02-28 10:31:22] ** Features with one or two measurements across runs are removed.
## INFO [2023-02-28 10:31:22] ** Fractionation handled.
## INFO [2023-02-28 10:31:22] ** Updated quantification data to make balanced design. Missing values are marked by NA
## INFO [2023-02-28 10:31:22] ** Finished preprocessing. The dataset is ready to be processed by the dataProcess function.

This function shows the progress. The output of OpenMStoMSstatsFormat, called quant, is ready for next
step.
## now 'quant' is ready for MSstats
head(quant)

## ProteinName PeptideSequence PrecursorCharge
## 1 AQUA4SWATH_HMLangeE AAEDFTLLVK(UniMod259) 2
## 2 AQUA4SWATH_HMLangeE AAEDFTLLVK(UniMod259) 2
## 3 AQUA4SWATH_HMLangeE AAEDFTLLVK(UniMod259) 2
## 4 AQUA4SWATH_HMLangeE AAEDFTLLVK(UniMod259) 2
## 5 AQUA4SWATH_HMLangeE AAEDFTLLVK(UniMod259) 2
## 6 AQUA4SWATH_HMLangeE AAEDFTLLVK(UniMod259) 2
## FragmentIon ProductCharge IsotopeLabelType
## 1 AQUA4SWATHHMLangeEAAEDFTLLVK(UniMod259)/2y5 <NA> L
## 2 AQUA4SWATHHMLangeEAAEDFTLLVK(UniMod259)/2y5 <NA> L
## 3 AQUA4SWATHHMLangeEAAEDFTLLVK(UniMod259)/2y5 <NA> L
## 4 AQUA4SWATHHMLangeEAAEDFTLLVK(UniMod259)/2y5 <NA> L
## 5 AQUA4SWATHHMLangeEAAEDFTLLVK(UniMod259)/2y5 <NA> L
## 6 AQUA4SWATHHMLangeEAAEDFTLLVK(UniMod259)/2y5 <NA> L
## Condition BioReplicate Run
## 1 512 512 split_napedro_L120417_001_SW_combinedfeatureXML
## 2 256 256 split_napedro_L120417_002_SW_combinedfeatureXML
## 3 128 128 split_napedro_L120417_003_SW_combinedfeatureXML
## 4 64 64 split_napedro_L120417_004_SW_combinedfeatureXML
## 5 32 32 split_napedro_L120417_005_SW_combinedfeatureXML
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## 6 16 16 split_napedro_L120417_006_SW_combinedfeatureXML
## Fraction Intensity
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 0
## 6 1 0

5.4.3 Different options for OpenSWATH output of DIA experiment in dataProcess

In dataProcess, users need to use censoredInt='0' for OpenSWATH output.
goldstandard.proposed <- dataProcess(quant,

normalization='equalizeMedian',
summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="0",
MBimpute=TRUE,
maxQuantileforCensored=0.999)

Further steps is the same as in general workflow (section 4.1).

6. SRM analysis with MSstats
6.1 Suggested workflow for SRM
This section describes a typical workflow for SRM experiments with heavy labeled-isotope peptides. The
example dataset, SRMRawData in MSstats is used for demonstration.

6.1.1 Preparing the data for MSstats input

The first step in using the MSstats is to format the data as described in Section 2. SRMRawData is already
formatted for MSstats input.
# Check the first 6 rows in SRMRawData
head(SRMRawData)

## ProteinName PeptideSequence PrecursorCharge FragmentIon ProductCharge
## 243 IDHC ATDVIVPEEGELR 2 y7 NA
## 244 IDHC ATDVIVPEEGELR 2 y7 NA
## 245 IDHC ATDVIVPEEGELR 2 y8 NA
## 246 IDHC ATDVIVPEEGELR 2 y8 NA
## 247 IDHC ATDVIVPEEGELR 2 y9 NA
## 248 IDHC ATDVIVPEEGELR 2 y9 NA
## IsotopeLabelType Condition BioReplicate Run Intensity
## 243 H 1 ReplA 1 84361.08350
## 244 L 1 ReplA 1 215.13526
## 245 H 1 ReplA 1 29778.10188
## 246 L 1 ReplA 1 98.02134
## 247 H 1 ReplA 1 17921.29255
## 248 L 1 ReplA 1 60.47029

62



6.1.2 Processing the data

It is the same workflow as described in section 4.1.2. Only difference is the normalization with heavy labeled
isotope peptides.

###$ Different normalization option Let’s see the different normalization effect with SRM dataset including
two proteins.
unique(SRMRawData$ProteinName)

## [1] IDHC PMG2
## 45 Levels: ACEA ACH1 ACON ADH1 ADH2 ADH4 ALDH6 ALF CISY1 CISY2 DHSA ... SUCB

No normalization No normalization is performed. If you had your own normalization before MSstats,
you should use like below.
srm.nonorm <- dataProcess(SRMRawData, normalization=FALSE)
dataProcessPlots(srm.nonorm, type='QCplot', address='srm_noNorm_')

Equalize medians normalization The default option for normalization is ‘equalizeMedians’, where all
the intensities in a run are shifted by a constant, to equalize the median of intensities across runs for label-free
experiment. This normalization method is appropriate when we can assume that the majority of
proteins do not change across runs. Be cautious when using the equalizeMedians option for a label-free
dataset with only a small number of proteins. For label based experiment,equalizeMedians equalizes the
median of reference intensities across runs and is generally proper even for a dataset with a small number of
proteins.
srm.equalmed <- dataProcess(SRMRawData, normalization = 'equalizeMedians')
dataProcessPlots(srm.equalmed, type='QCplot', address='srm_equalM_')
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Quantile normalization The distribution of all the intensities in each run will become the same across
runs for label-free experiment. For label-based experiment, the distribution of all the reference intensities will
be become the same across runs and all the endogenous intensities are shifted by a constant corresponding to
reference intensities.
srm.quantile <- dataProcess(SRMRawData, normalization='quantile')
dataProcessPlots(srm.quantile, type='QCplot', address='srm_quantile_')

Global standards normalization : example 1 If you have a spiked in standard across all MS runs,
you may set this to globalStandards and define the standard with nameStandards option. Global standard
peptide or Protein names, which you can assume that they have the same abundance across MS runs, should
be assigned in the vector for this option.

First, let’s assume that PMG2 proteins is the spike-in protein and shoule be equal amount across MS runs.
srm.global.pmg2 <- dataProcess(SRMRawData, normalization ='globalStandards',

nameStandards = 'PMG2')
dataProcessPlots(srm.global.pmg2, type='QCplot', address='srm_global_PMG2_')

64



Second, let’s assume that IDHC proteins is the spike-in protein and shoule be equal amount across MS runs.

srm.global.idhc <- dataProcess(SRMRawData, normalization ='globalStandards',
nameStandards = 'IDHC')

dataProcessPlots(srm.global.idhc, type='QCplot', address='srm_global_IDHC_')

Global standards normalization : example 2

Further steps is the same as in general workflow (section 4.1).
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